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Preface

The theory of fields is one of the oldest and most beautiful subjects in
algebra. It is a natural starting point for those interested in learning algebra,
since the algebra needed for the theory of fields arises naturally in the theory’s
development and a wide selection of important algebraic methods are used.
At the same time, the theory of fields is an area in which intensive work on
basic questions is still being done.

This book was written with the objective of exposing the reader to a
thorough treatment of the classical theory of fields and classical Galois
theory, to more modern approaches to the theory of fields and to one approach
to a current problem in the theory of fields, the problem of determining the
structure of radical field extensions.

I have written the book in the form of a text book, and assume that the
reader is familar with the elementary properties of vector spaces and linear
transformations. The other basic algebra needed for the book is developed in
Chapter 0, although a reader with very little background in algebra should
also consult other sources. Exercises varying from quite easy to very difficult
are included at the end of each chapter. Some of these exercises supplement
the text and are referred to at points where readers may want to see further
discussion. Others are used to cover in outline form important material
peripheral to the main themes in the book.

Chapters 1-4 give a comprehensive treatment of the more classical side of
the theory of fields and Galois theory. Chapter 1 and 2 are concerned with
the general structure of polynomials and extension fields. Galois theory is
developed extensively in Chapter 3. Chapter 4 covers the fundamental
theorems on algebraic function fields and relates algebraic function fields
and affine algebraic varieties.

In Chapter 5, I discuss three modern versions of Galois theory, in which
the Galois group of an extension is replaced by a ring, a Lie ring and a biring
respectively. In Chapter 6, I describe the structure of radical extensions and
their associated birings in terms of tori.

In Appendix S, I introduce the language of sets and describe the set theory
needed for the book. Witt vectors are needed in 3.10, and their properties
are developed in Appendix W. Tensor products are used quite often in
Chapters 5 and 6, and are discussed in Appendix T.

/In order to put the material of Chapters 5 and -6 in the proper formal
framework, I have included a fairly thorough treatment of algebras, coalgebras
and bialgebras in the appendices. In Appendix A, the structure of finite
dimensional commutative algebras is determined. In Appendix C, I discuss
coalgebras and develop the structure theory of cocommutative coalgebras.

vii
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viii Preface

In Appendix B, I develop a theory of K/k-bialgebras which generalizes the
usual theory of k-bialgebras.

To those already familiar with the theory of fields, some further remarks
may be of interest. In Chapter 2, the proof that the set k., of separable
elements of a finite dimensional field extension of k is a simple field extension
of k is simplified by a theorem on conjugates (see 2.2.10). At the beginning of
Chapter 3, a generalization of the Dedekind Independence Theorem is
proved (see 3.1.1). This is used to prove a theorem on Galois descent (see
3.2.5) which is then used to prove the Galois Correspondence Theorem
(see 3.3.3). In 3.4, the proof of the Normal Basis Theorem is simplified
by a theorem on conjugates (see 3.4.1). In Chapter 4, I prove that a p-basis
of an arbitrary separable extension K/k is algebraically independent (see
4.3.17), which greatly simplifies the proofs of theorems on separating tran-
scendency bases. In Chapter 5, I give a new treatment of the Jacobson-
Bourbaki Correspondence Theorem (see 5.1.7) and an accompanying descent
theorem (see 5.1.10), and of the Jacobson Differential Correspondence
Theorem (see 5.2.6) and its accompanying descent theorem (see 5.2.9), inspired
by work of Pierre Cartier and Gerhard Hochschild. In 5.3, I develop a Galois
theory of normal extensions based on the biring H(K/k) of an extension
KJ/k. The structure of K/k is related to the structure of H(K/k) (see 5.3.20), a
Biring Correspondence Theorem is proved (see 5.3.12) and a radical splitting
theorem for H(K/k) is proved for finite dimensional normal extensions
(see 5.3.21). This theory is parallel in some respects to a powerful Galois
theory of normal extensions based on the universal cosplit measuring k-
bialgebra of an extension K/k, developed by Moss Sweedler [20], but has the
advantage that the biring H(K/k) consists of linear transformations of K/k
and is therefore more easily studied. In Chapter 6, I discuss in detail the
structure of finite dimensional radical extensions K/k and their birings
H(KJk), in terms of tori. Tori are then used in proving a fairly deep generaliza-
tion of a theorem of Jacobson on finite dimensional Lie rings of derivations
of K (see 6.4.2). In Appendix B, I develop a formal theory of K/k-bialgebras,
which reduces to the usual theory of k-bialgebras when K = k. I then define
and discuss the K-measuring K/k-bialgebras and their k-forms, and determine
the structure of the finite dimensional conormal K-measuring K/k-bialgebras
and their cosplit k-forms. The theory thus developed places the material of
Chapters 5 and 6 in a formal framework within which the structure of
H(K/k) can be more effectively studied.

Other approaches to the theory of radical extensions are outlined in E.5 and
E.6 in the form of exercises. An outline of the proof of a theorem of Murray
Gerstenhaber on subspaces of Der K closed under pth powers-is given (see
E.5.8). Higher derivations are introduced, and a sketch of the proof of Moss
Sweedler’s theorem characterizing in terms of higher derivations those finite di-
mensional radical extensions which are internal tensor products of simple ex-
tensions is given (see E.6.11, E.6.14). Moss Sweedler’s universal cosplit
measuring k-bialgebra is introduced and discussed in E.6.21 and E.6.22. The
Pickert invariants of a radical extension are discussed in E.6.24 and E.6.25.
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Reflected in this book are the ideas of many people who have influenced
me directly and through their work in my thinking about fields. I would
particularly like to mention George Seligman, with whom I first studied
fields, Nathan Jacobson, whose work on fields is the basis for a large part of
this book and Moss Sweedler, whose work on coalgebras, bialgebras and field
theory is reflected in the last part of this book. Since a reflection is not real
substitute for an original idea, readers are urged to explore the books and
papers listed in the reference section, especially [2], [5], [9]), [10], [11], [12],
[18], [19], [20].

Much of this book is based on a course on bialgebras and courses on field
theory given at the University of Michigan in 1969, 1971 and 1972. Most of
the material of Chapters 5 and 6 and of Appendix B is the outgrowth of
preliminary research described at the 1971 Conference on Lie Algebras and
Related Topics at Ohio State University.

I would like to take this opportunity to express my thanks to my friend
and former student, Pedro Sanchez, whose lecture notes to my courses made
easier the writing of parts of this book, and to Hershey Kisilevsky, who
showed me the irreducible polynomial used in proving 3.12.2. I also wish to
thank the National Science Foundation for their support of research de-
scribed here, and to express my appreciation to the California Institute of
Technology, whose generous support during the academic year 1972-3
enabled the remaining research to be completed at this early date. Finally,
I would like to express my thanks to Catherine Rader and Frances Williams,
whose superb typing made as painless as possible the job of preparing the
manuscript.

Ann Arbor, Michigan and
Pasadena, California, March 1, 1973 David J. Winter
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0 Introduction

In this chapter, we give a brief but fairly self-contained introduction to
abstract algebra, in order to develop the language, conventions and basic
algebra used throughout the remainder of the book. Our notation for sets
of objects and for operations on sets is given in Appendix S.

We begin with basic material on groups, rings and fields. We then briefly
discuss transformation groups. Finally, we discuss the Krull Closure in a
group in anticipation of its role in Chapter 3.

0.1 Basic algebra

A product on a set Sis a mapping from S x S to S, which we may denote
(x,y) = x o y. A subset T of a set S with product x o y is closed (or closed
under x o y) if x o y e T for all x, y € T. A product x o y on S is associative if
(xoyp)oz = xo(yeoz)forx,y zeS. An element e of a set S with product
x o yisanidentityof Sife o x = x o e = xforx € S. One shows easily that Shas
at most one such e (see E.0.1). If such an e exists, S is said to have an identity.

A monoid (or semigroup with identity) is a set S with an associative product
x o y such that S has an identity. A submonoid of a monoid S'is a closed subset
T of S containing the identity of S. Such a T together with the product x o y
(x, y € T) is a monoid. For any element x of a monoid S, we let x° be the
identity element of S and x® = xox o---ox(n times) for any positive
integer n. In particular, x* = x for x € S. For x € S, the set T consisting of
x% x1,... is a submonoid of § and x™*" = x™ o x", (x™)* = x™ for all
nonnegative integers m, n (see E.0.4). In a monoid S, an inverse of an element
x € S is an element y € S such that xoy = yox = e, e being the identity
element of S. For each x €S, x has at most one inverse y (see E.0.2). If
x € S has an inverse, then we say that x is a unit or an invertible element of S,
and we denote the inverse of x by x~. The set S* of units of S'is a submonoid
of S and (xoy)~ =y~ ox~, (x~)” = x for x,yeS* (see E.0.3). For
x € S*, we define x~™ = (x~)" for any positive integer n. In particular, x~! =
x~ for x € S*. We call x* the nth power of x with respect to the product o.
For x € S'*, the set consisting of x°, x~2%, x, x~2, x%, ... is a submonoid of S
and x™*" = x™ o x", (x™)* = x™ for all integers m, n (see E.0.4). Elements
x, y of monoid S commute if x oy = y o x. A monoid S is Abelian (or com-
mutative) if x oy = y o x for x, ye S. If S is an Abelian monoid containing
elements x;,..., X,, we let [IPx; denote x, o---0ox, and then have
(TIr x)" = 17 (x))" for any nonegative integer n (see E.0.5).

A group is a monoid S every element of which is a unit. Thus, a groupisa
monoid S such that S = §* For any monoid S, S* is a group called the
group of units of S. A subgroup of a group S is a submonoid T of S such that

1



2 Introduction

x~ e Tfor all x € T. A subgroup T of a group S with product x o y (x, y€ S)
is a group with product x o y (x, y € T). A group S is Abelian if it is Abelian
asamonoid. If x,, . . ., x,, are elements of an Abelian group S, then ([ [T x;)~ =
T (x)~ and (TTF x)* = [ [ (x,)" for any integer n (see E.0.5).

A ring is a set A with two products x + y and xy, called addition and
multiplication respectively, such that 4 with addition is an Abelian group, 4
with multiplication is a monoid and x(y + 2z) = xy + xz, (x + y)z = xz +
yz for x, y, z € A. A subring of a ring A is a subset B of ¥ which is a subgroup
-of 4 with addition and a submonoid of A with multiplication. A subring B
of a ring 4 together with the addition x + y and multiplication xy (x, y € B)
is a ring. The identities of a ring 4 with respect to addition and multiplication
are denoted 0 and e respectively. The element e is the identity of the ring 4.
For x € A, x" is the nth power of x with respect to multiplication. We let
—x be the additive inverse of x in A4, so that x + (—x) = 0, and we let
y—x=y+ (~x)forx,yc A. We then define0-x = 0, n-x =x +---+ x
(n times) and (—n)-x = n-(—x) for any positive integer 1, so that n- x is the
nth power of x with respect to addition. In particular, 1-x = x for x€ 4.
One easily proves the basic equations x0 = 0x =0, (—x)y = —(xy) =
x(~y) for x,ye A and the basic equations (m + n)-x = m-x + n -Xx,
m-(n-x) = (mn)-x, m-(x + y) = m-x + m-y for x, y € 4 and any integers
m and n (see E.0.4).

A ring A4 is commutative if the monoid 4 with multiplication is commuta-
tive, that is, if xy = yx for x, y € A. An element x of A4 is a unit of the ring
A if x is a unit in the monoid 4 with multiplication. The group of units of
A is denoted A*.

A ring A is an integral domain if Aiscommutativeand 4 — {0} is nonempty
and closed under multiplication xy. In an integral domain, e # 0 (see
E.0.7). A field is an integral domain K such that the group of units K* is
K — {0}, that is, such that each nonzero element is a unit. Every subring of a
field is an integral domain. A subfield of a field K is a subring & of K such that
xek — {0} = x~* ek — {0}. A subfield of a field K is a field. Every integral
domain A is a subring of some field Ksuch that K = {xy~|xe 4, ye 4 — {0}},
and such a field K is a field of quotients of A (see E.0.10). Any two fields of
quotients of 4 are essentially the same (see E.0.11).

A homomorphism/isomorphism from a monoid or group S with product
x o y and identity e to a monoid or group S’ with product x’ o” " and identity
¢ is a mapping/bijective mapping ffrom S'to S’ such thatf(x o y) = f(x) o f(y)
and f(e) = ¢’. If an isomorphism from S to S’ exists, S and S’ are isomorphic.
An automorphism of S is an isomorphism from S to S.

A homomorphism|isomorphism from a ring or field 4 to a ring or field 4’
is a mapping/bijective mapping f from 4 to A’ such that fis a homomorphism/
isomorphism of monoids from 4 with addition to A’ with addition and from
A with multiplication to A’ with multiplication. If an isomorphism from
A to A’ exists, 4 and A’ are isomorphic. An automorphism of A is an iso-
morphism from A4 to A4.

An ideal of a ring 4 is a nonempty subset I of A closed under addition such
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that xy e I for x € 4, ye I and for x € I, y € A. The sets {0} and A are ideals
of 4. In a commutative ring A4, the set x4 = {xa|aec A} (xe A) is an
ideal of A4 called the principle ideal generated by x. If A is an integral domain
and every ideal of 4 is principal, 4 is a principle ideal domain.

Suppose that S is an Abelian group with product x + y and that Tis a
subgroup of S. Welet x + T={x + y|yeT} for xe€S. Then xex + T
and x + Tis the coset of T in S containing x. Two cosets x + Tand x’' + T
areequal ifand onlyif x — x' e T. If x — x' ¢ T, x + T and x’ + T are dis-
joint (see E.0.17). Thus, an element x is contained in precisely one coset,
namely x + T. We let S/T be the set {x + T | x € S} of cosets of Tin S. We
can define a product (x + T) + (y + T) = (x + y) + Tin T, and S/T with
this product is an Abelian group (see E.0.17).

Next, let 4 be a ring and 7 an ideal of 4. We can also define a product
(x+D(y + 1D = xy + I, and A4/I with the so defined additive and multi-
plicative products is a ring (see E.0.18). The mapping f(x) = x + I (x€ 4) is
a homomorphism from A4 to A/I. The ring A/I is the quotient ring of A by I, f
the quotient homomorphism.

‘ If f: A — B is a homomorphism from a ring A4 to a ring B, then the set

Kernel f = {ae A | f(a) = 0} is an ideal of 4 called the kernel of f. The set
Image f = {f(a) | a € A} is a subring of B called the image of f. There is an
isomorphism from 4/Kernel f to Image f which sends a + Kernel fto f(a) for
a € A (see E.0.19). In particular, fis injective if and only if Kernel f = {0}.

Now suppose that 4 is a commutative ring and let 7 be an ideal of 4. Then
I'is maximal if I # A and the only ideals of 4 containing I are I and 4. One
shows easily that 4 is maximal if and only if 4/ is a field (see E.0.23). If 4/1
is an integral domain, then 7 is a prime ideal. Equivalently, I is a prime ideal
if I # A and xy ¢ I for x ¢ I and y ¢ I. The kernel of any homomorphism f
from A into an integral domain is prime.

We now let K and L denote fields and let 1 denote the identity of K. Then
K has no ideals other than {0} and K, since K/{0} is a field.

0.1.1 Proposition. Every homomorphism f from K to L is injective.

Proof. Kernel fis an ideal of K. Since f(1) # 0, Kernel f # K. Thus,
Kernel f = {0} and f'is injective. []

For ay,...,a,€ K, we let JtaX'= a,X° + ...+ a, X" denote the
infinity-tple (@o, . . ., 45, 0, . . .) (all entries are 0 after the (n + 1)-st). This is
called the polynomial with coefficients ay, . . ., a,. The polynomials aX°(a € K)
are the constant polynomials, or the polynomials of degree 0. The degree of a
nonconstant polynomial >% a; X?, denoted Deg >% a,X?, is the integer d such
that a; # 0 and a; = O for i > d. The leading coefficient of 35 a,X* is a,
where d = Deg 37 a, X If the leading coefficient of 32 q, X" is 1, we say that
28 a; X' is monic. One shows easily that two polynomials 3% a,X* and
268 b X" are equal if and only if ¢; = b; for 1 < i < n. The set of polynomials
with coefficients in K is denoted K[X]. We let

iaiX‘ + i b X' = i(ai + b)X?
0 0 1]
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and

m+n

(Oi a,X‘) (OZ b,X,) = ; e X*

where ¢, = >, ;- aib;, define addition and multiplication in K[X]. One
easily shows that K[ X'] with these products is a commutative ring. Note that
Deg (f(X)g(X)) = Deg f(X) + Deg g(X) for nonzero f(X), g(X) € K[X]
(see E.0.24). It follows that K[X] is an integral domain. It is convenient to
“identify’” a with aX° for ae K and 1 with X° (see E.0.9). Then X is the
subset of constant polynomials and K is a subring of K[X]. The group of
units of K[X]is K* = K — {0} (see E.0.25).

0.1.2 Proposition. K[X] is a principle ideal domain.

Proof. Let I be a nonzero ideal of K[X]. Take f(X) to be a nonzero
element of I of least degree, g(X) a nonzero element of 7. What we must
show is that g( X) is a multiple f(X)A(X) of f(X) (for some A(X) e K[X]).
Suppose not, and take the degree of g(X) to be minimal such that g(X) e I —
{0} and g(X) is not a multiple of f(X). Choose X* such that Deg (f(X)X* —
(a./b,)g(X)) < Deg g(X) where a,, b, are the leading coefficients of f(X),
g(X) respectively. By the minimality assumption, f(X)X? — (a,/b,)g(X) is a
multiple of f(X). But then g(X) obviously is also a multiple of f(X), a
contradiction. Thus, every g(X) € I is a multiple of f(X). [0

The group of units of K[X] is K*. Elements f(X), g(X) e K[X] are
associates if f(X) = cg(X) for some unit ¢ € K*. Equivalently, f(X) and
g(X) are associates if f(X) divides g(X) and g(X) divides f(X), where we
say that f(X) divides g(X) if g(X) = f(X)h(X) for some A(X)e K[X].
If f(X) is not a unit and if only units and associates of f(X) divide f(X), then
f(X) is irreducible.

0.1.3 Proposition. The following conditions are equivalent, for
f(X) e K[X].

1. f(X) is irreducible;

2. the ideal f(X)K[X] is maximal; )

3. the ideal f(X)K[X] is prime.

Proof. Let I = f(X)K[X]. Suppose that f(X) is irreducible and that
J is an ideal of K[X] containing I. Then the generator g( X) of J divides f(X)
and is either a unit or an associate of f(X), Thus,J = 4 orJ = Iis maximal.
Suppose next that 7 is maximal. Then 4/7 is a field, so that I is prime. Finally,
let 7 be prime and let f(X) = g(X)A(X). Then g(X) eI or h(X) € I. Thus,
f(X) divides g(X) or A(X). But g(X) and A(X) divide f(X). Thus, g(X) or
h(X) is an associate of f(X) and A(X) or g(X) a unit. []

0.1.4 Proposition. Let f(X) be irreducible and suppose that f(X)
divides g(X)A(X). Then f(X) divides g(X) or A(X).

Proof. Let d(X) be the generator of the ideal I = {f(X)a(X) +
g(X)b(X) | a(X), b(X) € K[X]} of K[X]. Then d( X) divides each element of
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I. Since f(X), g(X) € I, d(X) divides f(X) and g(X). Since f(X) is irreducible,
d(X) is a unit ¢ or d(X) is an associate of f(X). In the latter case, f(X)
divides g(X) since d(X) does. In the former case ¢ = f(X)a(X) + g(X)b(X)
for some a(X), b(X) € K[X]. Then ch(X) = f(Xa(X)I(X) + g(X)(X)b(X).
Since f(X) divides g(X)h(X), f(X) divides ch(X), hence divides A(X). I

0.1.5 Theorem. A nonconstant polynomial f(X) e K[X]can befactored
into f(X) = [I7 g(X) where the g,(X) are monic irreducible elements of
K[X]. Moreover, the factors 2{X) of any other such factorization f(X) =
I'T? h(X) with h(X)e K[X] irreducible can be rearranged to f(X) = [ ¢
hy(X) so that g,(X) = h(X)..., gn(X) = h(X) (in particular, m = n).

Proof. The existence of the factorization is seen by a simple induction
on Deg f(X). The uniqueness follows easily from 0.1.4 (see E.0.39). []

0.1.6 Proposition. Let R be a commutative ring containing x and con-
taining the field k as subring. Then there is precisely one homomorphism
e: k[X]— R such that e(a) = a for ac k and e(X) = x.

Proof. Since each nonzero f(X) e k[X] has the form 3% a,X*(a, # 0)
where n and the g, are uniquely determined by f(X), we may define e by
e(Ct a;X?) = 3% axt. We leave the remaining details to the reader. []

The homomorphism e described in 0.1.6 is the evaluation homomorphism
from k[X] to R at x. It isconvenient to denote e(f( X)) by f(x) for f(X) € k[ X].

Commutative rings isomorphic to k[X] also have the properties described
for k[ X] in the last few paragraphs. Such rings are used often in this book and
are referred to as follows.

0.1.7 Definition. Let R be a commutative ring containing x and con-
taining the field k as subring. Suppose that the evaluation homomorphism
S(X) — f(x) from k[ X] to Ris an isomorphism. Then we say that x is an inde-
terminant over k and R is a polynomial ring over k in the indeterminant x,
and we denote R by k[x].

We now consider a polynomial ring k[x] over k in an indeterminant x and
its field of quotients k(x). The elements of k[x] are of the form f(x) = >% a;x'
(a; e k for all i) and the elements of k(x) are of the form u(x)/v(x) where
u(x) € k[x] and v(x) € k[x] — {0}. Let k(x)[X] be the polynomial ring over the
field k(x) in an indeterminant X, and let k[x])[X] be the subring of k(x)[X]
consisting of the polynomials in X of the form 3% a,(x)X* where the a;(x)
are elements of k[x]for 1 < i < n.

0.1.8 Definition. Anelement f(X) = 3% a(x)X* of k[x][X] is primitive
if no irreducible element of k[x] divides a;(x) for all i.

For any f(X) € k(x)[X], one can write f(X) = a(x)f*(X) where f*(X) is
a primitive element of k[x][X] and a(x) € k(x).

0.1.9 Proposition. Let a(x)f*(X) = b(x)g*(X) where f*(X), g*(X) are
primitive elements of k[x][X] and a(x), b(x) € k(x) — {0}. Then f*(X) =
dg*(X) for some dek.
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Proof. Let a(x) = s(x)/t(x) and b(x) = u(x)/v(x) where s(x), t(x), u(x),
v(x) € k[x]. Then s(x)(x)f*(X) = t(x)u(x)g*(X). By 0.1.5, the coefficients
in k[x] of the left hand side s(x)v(x)f*(X) have a comimon divisor m(x) of
greatest degree, which is unique up to a constant multiple. Since f*(X) is
primitive, s(x)v(x) is such a common divisor, so that s(x)v(x) is a constant
multiple of m(x). The same argument applies to the right hand side of the
equation. Consequently, s(x)v(x)d = t(x)u(x) for some d € k. It follows that
s(I(x)f*(X) = s(x)o(x)dg*(X) and f*(X) = dg*(X). O

0.1.10 Proposition. Let f*(X) and g*(X) be primitive elements of
k[x][X]. Then f*(X)g*(X) is a primitive element of k[x][X].

Proof. Let f*(X) = 3% a(x)X* and g*(X) = 23 b(x)X’. Let c(x) be an
irreducible element of k[x], and let a,(x) and b,(x) be the first coefficients of
f*(X) and g*(X) respectively which are not divisible by c(x). Then the
(i + j)th coefficient of f*(X)g*(X) is a(x)by(x) + 27-1 @-(X)bs.(x) +
>i_1 a1,(x)b;_(x), which is not divisible by c(x) since the latter two sums
are divisible by c¢(x) and a,(x)b,(x) is not divisible by c(x) (see 0.1.4). 1[I

0.1.11 Theorem. Let f(X), g(X), W(X)ek(x)[X] and let f(X) =
a(x)f*(X), g(X) = b(x)g*(X), h(X) = c(x)h*(X) where f*(X), g*(X),
h*(X) are primitive elements of k[x][X]. Then if f(X)g(X) = h(X), we
have f*(X)g*(X) = dh*(X), for some dek.

Proof. Let f(X)g(X) = h(X). Then we have a(x)b(x)f*(X)g*(X) =
c(x)h*(X). Since f*(X)g*(X) and h*(X) are primitive, it follows that
f*(X)g*(X) = dh*(X) for some de k, by 0.1.9. []

The observations that we have just made show that k[x][X] has a unique
factorization property analogous to the unique factorization property of
k(x)[X] described in 0.1.5. More generally, the integral domain k[X;, ..., X,]
= (.. .((K[X:D[X2D)...[X,]) (constructed by iterating the construction of
k{x][X] and called the polynomial ring over k in the n indeterminants X, .. .,
X,) has such a unique factorization property. (see E.0.49).

0.2 Groups

We now let G.be a group with identity element e. It is often convenient to
denote e by 1 and the subgroup {e} by 1. If'S is a collection of subgroups of
G, then (\ues H is a subgroup of G. If § = G and S is the collection of sub-
groups of G containing S, then (S = (M\us His the subgroup of G generated
by S.If S = {51, ..., 5.}, wedenote {(S> by {sy, . . ., 5,>. In particular, (g ) is the
subgroup of G generated by g. If G = {(g), then G is cyclic with generator g.
The order of G is the cardinality (number of elements) of G and is denoted
|G|. The order of an element of g of G is the order of (g ) and is denoted | g|.
The mapping e : Z — { g > defined by a(m) = g™ for m € Z is a homomorphism
from Z as additive group onto {g>. (See E.0.4). The kernel of « is an ideal
I of Z, so that I = {0} or I = Zn (set of multiples of n) for some positive
integer n (see E.0.30). Thus, {(g) is isomorphic to Z or to the additive group
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{0,1,...,n — 1} of integers modulo n. (See E.0.38). It follows that if |g| is
infinite, then {g)> = {g™|m = 0, +1, £2,...} and the powers g"(m € Z) are
distinct. And if |g| is finite, then {g)> = (g% g%, ..., g™~ ) where |g| = n
and where # is the least positive integer such that g* = e. Moreover, g™ = eif
and only if # divides m. .

Let H be a subgroup of a group G and let x € G. We let xH denote the
set {xh|h € H} and call xH the left coset of H in G defined by x. The set of left
cosets of H in G is denoted G/H. Left cosets xH and yH are equal if and only
if x~'ye H.If x~1y ¢ H, the xH and yH are disjoint (see E.0.68). Thus, each
element x of G is contained in precisely one left coset of H in G, namely xH.
The index of H in G is the cardinality (number of elements) |G/H| of G/H
and is denoted G: H. The index G:1 of 1in G is the order of G. Since the cardi-
nality of xH is H:1 for all x € G, we have the following theorem.

0.2.1 Theorem. Let G be a group, H a subgroup of G. Then G:1 =
(G:H)(H:1). In particular, the order H:1 of any subgroup H and the order
|g| of any element g of a finite group G divide the order G:1 of G. []

If Gy, ..., G, are groups, the set G, x ... x G, together with the product
81 os 8)(hyy ..o B = (gahy, . . ., goh) is a group called the outer direct
product of Gy,..., G, and denoted [I? G, (outer direct product). If G is a
group and if G,, ..., G, are subgroups of G such that the mappingf: ['T: G;
(outer direct product) - G defined by f(gy,...,8,) = &1... £, IS an iso-
morphism, then we say that G is the inner direct product of G4, ..., G, and
write G = [ G; (inner direct product). Note that |[1? Gi| = T3 |G| for
any inner or outer direct product [} G,.

Suppose that G is a finite Abelian group. For any prime number p, the
set G, = {ge G| g% = efor some f} is a subgroup of G. The order of G, is a
power of p, as we now show by induction on the order of G,. If |G,| = 1,
the assertion is trivial. Otherwise, let g be an element of G, — {e} and let
H = {g>. Since G is Abelian, we may pass from the group G, to the group
G,/H. By induction, its order G,:H is a power of p. Since the order of
H = (g) is a power of p, the order G,:1 = (G,: H)(H :1) is a power of p.

We claim that G = []? G,, (internal direct product) where |G| = [ p/.
To see this, consider the homomorphism f:] ]} G, (outer direct product) — G
defined by f(g1, ..., &) = &1, - - -» 8o~ We must show that Kernel f = 1 and
Image f = G. Let p be a prime and let (g3, .. ., g,) be an element of [} G,,
(outer direct product) of order p. Then g = e for all j. Since g, € Gy,, We
have g, = e for p # p,. But then p = p, and f(g,,..., g,) = g has order p
for some 7, so that (g,,..., g,) ¢ Kernel f. If Kernel f # 1, then one sees
easily that Kernel f would contain an element (g, ..., g,) of prime order,
which we have just seen to be impossible. Thus, Kernel f = 1. Next, let
g € G and note that the order of g is of the form |g| = [ p%, by 0.2.1.
Since the integers |g|/pi, ..., |g|/p.°» have greatest common divisor 1,
we can express 1 as a linear combination 1 = my(|g|/p,%) + -+ +
m,(|g|/ps°») where m,,...,m,€Z (see E.0.41). Letting g, = g% where
d, = m(|g|/p#), we have g=g'=g2" =TJtg, and g7 =e for
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1 <i<nThus,g = f(g1,..., g, and g € Image f. We have now shown that
G = Image fand 1 = Kernel f, so that G = [ G,, (inner direct product).

The assumption in the preceding paragraph that G be a finite Abelian
group can be replaced by the much weaker assumption that G be a finite
nilpotent group, that is, that the subset G, = {g e G | g? = e for some f} be
a subgroup of G for every primé p. For then each G, is a subgroup of G whose
order is a power of p (see 0.3.2). And one sees easily that for any two distinct
prime numbers p and g, the elements of G, commute with the elements of G,
(see E.0.70), so that fis a homomorphism. The remainder of the discussion
goes through as in the Abelian case, and again we have G = []f G,, (inner
direct product). We state this for future reference.

0.2.2 Theorem. Let G be a finite nilpotent group. Then G = []f G,
(inner direct product) where G:1 = T2 p;% is the prime decomposition of the
orderof G. [1

A basis for a finite Abelian group G is a set of distinct nonidentity elements
81s- .., 8n Of G such that G = {(g,>---<{g,> (internal direct product). For
distinct nonidentity elements g4, . . ., g 0f G to be a basis for G, it is necessary
and sufficient that G = {g,,...,g,> and that [} g% = e if and only if
g& =eforl < i < m, the e, being integers for 1 < i < n.

Every nontrivial finite Abelian group G has a basis. To prove this, we
first note that since G = ['[t G,, (internal direct product) where G:1 = [ p.*
is the prime decomposition of G:1, it suffices to consider the case where
G = G,and G:1 = p°, p being a prime number. We now procede by induction
on G:1. If G:1 = p, then G = (g) for any g€ G — 1. Suppose that G:1 =
p® > pand let G* = {g? | g € G}. Then G 2 G?, as one easily verifies, and we
may assume that G? = 1 or G? has a basis g,,..., g. In the former case,
the argument is as for vector spaces—in fact, Abelian groups G such that
G” = 1 may be regarded as vector spaces over the field {0,1,...,p — 1}
of p elements (see E.0.38). In the latter case, let A, ..., k, be elements of G
such that 4* = g, for 1 < i <r, and let H = <{hy,..., h,>. Then hy, ..., h,
is a basis for H. For suppose that [ ] 4 = e. We must show that A% = e
for 1 < i < r. Taking pth powers, we have [} g% = e, so that g% = e and
ple; for 1 < i < r. Letting e, = pf;, we have e = [T} % = []i g/+. Thus,
e =g’tand e = b4 for 1 < i < r. Note that there is nothing more to prove
if G = H, so that we may assume G' 2 H. Letting X denote the coset xH for
x € G, we choose, by induction, a basis X,,..., X, for G = G/H. Since
G? = H?, there exist uy,...,u,€ H such that x? = u? for 1 <j <s.
Letting y; = x,u;~*, we have y, = %; and y» = e for 1 <j < 5. We claim
that Ay, ..., Ay, y1,. .., ¥ is a basis for G. It is ‘clear that G = <h,,..., h,,
Y1, ... Ysp. Suppose that e = [T7 A% 1§ y/s. Then & =[]} /1, so that
¢ = yfrandp|f;for]l < j < s.Butthene = y/s,sincee = y?,forl <j <s.
Thus,e =[] i¥*and e = A forl <i < r. Thus, hy,..., H y1,..., )si5 2
basis for G. We state this theorem for future reference.

0.2.3 Theorem. Every nontrivial Abelian group G has a basis. []
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The exponent Exp G of a finite group G is the least integer m such that
gt =eforallgedG.

0.2.4 Theorem. Let G be a finite nilpotent group. Then G has an
element of order Exp G.

Proof. We know that G = [ ]} G,, (internal direct product) (see 0.2.2).
Since the elements of G,, all have orders which are powers of p, (see 0.3.2),
G,, has an element g, whose order is the exponent of G,,. Letting |g;| = p;*,
the element g = []% g; has order [ % p;%, and one easily sees that [} p,* is
the exponent of G. [J

We now turn to an arbitrary group G. For x € G, we let Int x(g) =
*g = xgx~1for g € G. Then Int x: G — G is an automorphism of G, called the
inner automorphism of G determined by x. Note that Int e: G — G is id; and
Int(xy) = Int x o Int y. Thus, Int is a homomorphism from G to the group of
bijections from G to G (see E.0.82). We let Int G = {Intg | g< G} and
C(G) ={xeG|Intx =inte} = {xe G| xg = gx for all ge G}. The sub-
group C(G) of G is called the center of G.

A subgroup H of a group G is normal in G if Int x(H) = H for all x € G.
For a subgroup H of G to be normal, it is necessary and sufficient that
xH = Hx for all x € G, where Hx = {hx | h € H}. If H is a normal subgroup
of G, then the product (xH)(yH) = (xy) H (x, y € G) is well defined and
G/H = {xH | x € G} together with this product is a group, called the quotient
group of G by H (see E.0.69). For any normal subgroup H of a group G, the
mapping f: G — G/H defined by f(x) = xH (x € G) is a surjective homomor-
phism with Kernel H, and is called the quotient homomorphism from G to G/H.

If fis a homomorphism from a group G to a group G’, then Kernel f =
{x € G| f(x) = e} is a normal subgroup of G, Image f = {f(x) | xe G} is a
subgroup of G’ and there is an isomorphism from G/Kernel f to Image f
mapping x Kernel f to f(x) for all x € G. In particular, f is injective if and
only if Kernel f = 1.

If N and H are subgroups of a group G and if N is normal in G, then
NH = {xy | xe N, y e H} is a subgroup of G and N is a normal subgroup of
NH. Furthermore, N N H is a normal subgroup of H and there is an iso-
morphism from NH/N to H/N n H mapping xN to x(N N H) for all xe H
(see E.0.71). ,

A tower in Gisachain1 < G, < --- < G, = G of subgroups of G. If
G;is normal in G, ., and G;,,/G;is cyclicfor 1 < i < n — 1, then this tower
is cyclic. If G has-a cyclic tower, G is solvable. If N is a normal subgroup of
G, then G is solvable if and only if N'and G/N are solvable (see E.0.76).

0.3 Transformation groups

Let G be a group, e the identity element of G. A G-space is a set X together
with a product »: G x X — X, denoted (g, x) > gx for g€ G, x € X, such
that ex = x and (gh)x = g(hx) for g, he G, x € X. A G-space X determines
a homomorphism from G into the group F(X, X)* of bijective functions from
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the set X to itself (see E.0.82). The kernel of this homomorphism is N =
{ge G| gx = xfor x€ X}, and is called the kernel of G on X. If N =1,
then X is faithful.

A G-morphism from a G-space X to a G-space Y is a mapping f from X
to Y such that f(gx) = gf(x) for g€ G, x€ X. A G-isomorphism from
X to Y is a bijective G-morphism from X to Y. A G-automorphism of
X is a G-isomorphism from X to X. The set of G-morphisms from X.
to Y/G-isomorphisms from X to Y/G-automorphisms of X is denoted
Homg(X, Y)/Isomg(X, Y)/AutgX.

A subset Y of a G-space X is G-stable (or stable under G) if g(Y) =Y
for g € G. Such a Y together with 7|¢ v is a G-space called a G-subspace of X.

For x € X, we let Gx denote {gx | g € G} and call Gx the G-orbit of x
(or the orbit of x under G, or the orbit of G containing x). A subset Y of X
is G-stable if and only if ¥ = J,.y Gy. We let X¢ = {xe X| Gx = {x}}
and call X€ the set of fixed points of G in X.

We may regard G together with the group product G x G— G as a G-
space. More generally, G/H with the product G x G/H — G/H givén by
g(xH) = gxH (g € G, x € G) is a G-space for any subgroup H of G.

We let G, = {ge G| gx = x} and call G, the isotropy subgroup of x.
Then there is a G-isomorphism from G/G, (as a G-space) to Gx (as G-space)
mapping gG, to gx for g e G. In particular, G:G, = |Gx| (the cardinality
of Gx) for xe G. If X = Gx for some (or every) x € X, we say that G is
transitive on X (or X is a transitive G-space). If Gx = X and G, = 1 for
some (or every) x € X, we say that G is simply transitive on X (or X is a
simply transitive G-space). Thus, G is simply transitive on X if and only if
the mapping f,: G — X sending g to gx for g e C is a G-isomorphism for
some (or every) x € X. Also, G is simply transitive on X if and only if for
any x, y € X, there exists a unique g € G such that gx = y.

A G-group is a group H together with a product G x H — H with respect
to which H is a G-space such that g(xy) = (gx)(gy) for g€ G, x,ye H.
For g € G, the mapping x > gx on a G-group H is an automorphism of H.
Thus, products with respect to which a group H is a G-group correspond to
homomorphisms from G to the group Aut H of automorphisms of H. We
carry over to G-groups the terminology kernel, faithful, G-morphism, G-
isomorphism, etc. which we introduced for G-spaces. Note that if H is a
G-group, the set H of fixed points of G in H is a subgroup of H.

A very important instance of a G-group is the group G itself, together with
the product G x G — G defined by (g, x)>x =g x g7 (g€ G, x€G). In
this case, the orbit of xe G is °x = {gxg~'|ge G}, and is called the
conjugacy class of x in G. The elements of ®x are the conjugates of x in G.
For ©x to consist of the single point x, it is necessary and sufficient that x
be an element of the center C(G) of G. For a finite group, we therefore have
the decomposition G = C(G) U ®x, U --- U Cx, (disjoint union) where
8%, ..., %X, are those distinct orbits of G having two or more elements.
Since |%x| = G:G, for x € G, this yields the class equation G:1 = C(G):1 +
G:G,, + -+ + G:G,, of G. The subgroup G, occurring in the class equa’ fon
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is the centralizer {g € G | gx = xg} of x in G. We can easily prove the follow-
ing basic theorem, needed for the proof of 3.12.2.

0.3.1 Theorem. Let G be a finite group and let p be a prime number
dividing G:1. Then G has an element of order p.

Proof. We prove this by induction on G:1. If G:1 = 1, the assertion
is trivial. Suppose next that G:1 > 1 and consider the class equation
G:1=C(G):1+ G:Gy, + -+ G:G,, of G. If any of the proper sub-
groups G, (1 < i < m) has order divisible by p, then it has an element of
order p, as desired. Otherwise, since p divides G:1 = (G: G, )(G,,:1), p must
divide G:G,, for 1 < i < m. From the class equation, it follows that p
divides C(G):1. Since C(G) is Abelian, C(G) therefore has an element of
order p (see 0.2.2). [

A p-group is a group G such that the order of each element of G is a
power of p.

0.3.2 Corollary. Let p be a prime number and let G be a finite p-group.
Then the order G:1 of G is a power of p.

Proof. Suppose not. Then there is a prime number ¢ such that ¢ # p
and g divides G:1. But then G has an element of order ¢, a contradiction. []

Another important consequence of the class equation is the following
theorem. '

0.3.3 Theorem. The center C(G) of a nontrivial finite p-group G is
nontrivial.

Proof. Since G:1is a power of p, p divides G:G,, for 1 < i < m. Thus,
p divides C(G):1. (We refer, of course, to the class equation). ]

0.3.4 Corollary. Every nilpotent group is solvable.

Proof. Suppose not and take a nonsolvable nilpotent group G of minimal
order. We have seen that G = [} G, (inner direct product), where we may
suppose that G, is nontrivial for 1 < i < n.If n > 2, then G, and G/G,, ~
['13 G,, are solvable, by the minimality assumption, so that G itselfis solvable—
a contradiction. Otherwise » = 1 and G is a p-group for p = p,. But then
C(G) # 1. Thus, G/C(G) is solvable, by the minimality assumption. Since
C(G) is solvable (in fact Abelian), G is therefore solvable. [J

We now let X be a set of » distinct elements. The symmetric group on X
is the group S(X) of bijective mappings from X to X. Thus, for o, = € S(X),
o 7 is the element of S(X) such that (o7)(x) = o(7(x)) for x € X. We may
regard X as S(x)-space. If x,, ..., x, are r > 2 distinct elements of X, then
[x1, ..., x,] denotes the element o of S(X) such that o(x;) = x5, o(x2)=xXs,
vovy 0(X,_1) = X, o(x,) = x; and o(x) = x forall xe X — {x,,..., x,}, and
is called the cycle or r-cycle determined by x, . . ., x,. Two cycles [x,, .. ., x,]
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and [y1,...,¥s] are disjoint if x, #y, for 1l <i<rand 1 <j<s If
[x5,...,x,] =0¢ and [yy,...,y] = 7 are disjoint cycles, then or = 7o.
Any nonidentity element ¢ e S(X) can be expressed as a product o =
ey oo X [y .. s sl - [21, - - - 2] of pairwise disjoint cycles, and the
pairwise disjoint cycles occurring in such a decomposition of ¢ are unique
up to the order of their occurrence. When one regards X as a{o)-space, the
orbits of two or more elements under the cycle group {o) are then the sets
{X1s e os Xehs {F1s - o s Vs« « o5 {215 - - +» Z:}. TO prove all this, take x; arbitrarily
such that o(x;) # x; and let x;, x; = o(xy), X5 = 0%(X1), ..., X, = 0"~ (x1)
be the orbit of x, under {¢)>. Then choose y, arbitrarily outside the orbit
of x; such that o(y;) # y; and let y;, ya = o()1), ya = 6®(y1), ..., s =
o*~1(y,) be the orbit of y, under (o). Continuation of this process leads
eventually to the last orbit z,, z; = o(zy), ..., z; = ¢~ (z;) of two or more
elements. Theno = [x,..., %1y, .. .,¥]. .. [21, . - ., Z:], because the left hand
side and right hand agree for all x € X. It is clear that the disjoint cycles
occurring in such a decomposition of o are unique up to the order of their
occurrence.

Note that for r > 3 and distinct elements x,, . . ., x, of X, [xy, x;1[x1,. ..,
x] = [xs ..., x] and [xy,..., %][x; X%,_1] = [x1,..., X,—;]. It follows
that [x,, Xp_1] - [x2, xl][xls cees xr] =id =[xy, ..., %][x Xp-1]--- [x2, xl]a
where id is the identity of S(X). Taking inverses, we have [x;,..., x,] =
[xls x2] e [xr—l’ xr]'

For any two distinct elements x, y of X, the 2-cycle [x, y] is called the
transposition of x and y. It follows from the preceding paragraph that any
r-cycle is the product of r — 1 transpositions. Consequently, any element
o € S[X] can be written as a product of >7 (r; — 1) transpositions, where
Fi, ..., 'y are the number of elements in the m distinct orbits of <{c¢) in X.

Fix an ordering x4, . . ., x, of all #n elements of X. For i # j, the orientation
of the ordered pair (x;, x;) is f(x;, x,) = +1 if i <j and f(x;, x;) = —1if
j < i. For o € S(X), we define (—1)? = [T, <;f(a(x)), o(x;)). Note that(—1)°
is —1 raised to the sth power where s is the number of pairs (x;, x;) (i < j)
whose orientation is changed by o. If = is a transposition, then one sees easily
that (—1)** = —(=1)° = (=1 (=1 forall c e S(X). If 6 = 74, 73,..., 74
where 7, 7g,..., 7, are transpositions, it follows that (—1)* = (—1)', so
that (—1)?is +1if risevenand —1if r is odd. It follows thatifo = 7,,..., 7,
and o = 71,..., 7, where the 7, and 7. are transpositions, then r is even/odd
if and only if r' is even/odd. We say that o is even/odd if o has a decomposiiion
T = 14,..., 7, Where r is even/odd. Note that every o € S(X) is either even
or odd (but not both). Note also that 0,0, is even if and only if ¢, and o, are
both even or both odd, for all ¢, o, € S(X). Finally, note that (—1)’ =
+1/(=1)° = —1if o is even/odd, and that (—1)°%2 = (—1)% (—1)°= for all
a1, o3 € S(X).

The subset A(X) = {o € S(X) | ois even} is a subgroup of S(X), called the
alternating group on X. If ¢ is any fixed transposition and = € S(X) — A(X),
then ¢~ 'r € A(X) (both ¢~ and 7 are odd). Thus, S(X) = A(X) U ¢ A(X).
It follows that S(X):A(X) = 2 for » > 2. Furthermore, A(X) is a normal
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subgroup of S(X). For if reA(X) and oeS(X), then (—1)" "=
(=) (=D (=1 = (=1 (=1 =L

It is convenient at this point to take X = {1,.. ., n}. The symmetric group
S{l1,...,n}) on{l,...,n} is called the symmetric group on n letters and is
denoted S(n). Similarly, the alternating group A({l,...,n}) on {l,...,n} is
called the alternating group on n letters and is denoted A(n).

For n > 5, one can prove that A(n) is simple in the sense that the only
normal subgroups of A(n) are A(n) and 1. We do not prove this here, but we
do note that S(n) is not solvable for n > 5. To see this, simply observe that
S(n), for n > 5, contains a subgroup isomorphic to A(5). Since A(5) is simple
(see E.0.84), A(5) is not solvable. Thus, S(n) is not solvable.

We conclude this section with the following theorem, which weneed in 3.12.

0.3.5 Theorem. Let p be a prime number. Then for any transposition
o and p-cycle = in S(p), S(p) is generated by ¢ and .

Proof. For convenience, we reorder the elements so that ¢ = [1,2].
Since some power of the p-cycle » maps 1 to 2, we may replace 7 by this
power and reorder 3, ..., psothat r = [1,2, 3, ..., p]. For any 8 € S(p) and
i # j, we have 8[, /18- = [8(i), 8(j)). Upon using this formula repeatedly,
we see that the subgroup H generated by sand rcontainse = [1,2], 70771 =
[2,3]72c72=1[3,4],...,77 20 72"? = [p — 1, p]. Itfollows that H con-
tains [1, 2], [1, 3] = [1, 2][2, 31[1, 21, [1, 4] = [1, 31[3, 41[1, 3], ..., [1,p] =
[1,p — 1][p — 1, pl[1,p — 1]. Finally, H contains [i,j] = [1, {][1, jI[1, i]
for all i # j. It follows that S(p) = H, since every element of S(p) is a product
of transpositions. []

0.4 The Krull Closure in a group G

Let G be a group with identity element e, N the set of normal subgroups
N of G of finite index. For any subset S of G, let § = (N\yen NS where NS
denotes {xs | x € N, s € S}. The set S is the Krull Closure of S and S is closed
if S =S

0.4.1 Proposition. Let H be a subgroup of G of finite index. Then H is
closed.

Proof. GJ/H is finite. Regard G/H as G-space and let N be the kernel of
G on G/H. Then G/N is isomorphic to a subgroup of the group F(G/H, G/H)*
of transformations of the finite set G/H. Thus, N € N. But NH = H, by the
definition of N, so that H = H and H is closed. []

For most of our purposes, the above discussion suffices. However, for the
sake of completeness, we develop the above ideas further. The Krull Topology
on G is the topology on G having the set {Ny | N € N, y € G} of cosets as base
of open sets. The Krull Closure S of S is the closure of S of S in the Krull
Topology (see E.0.85 and E.0.87).

" 0.4.2 Proposition. The open subgroups of G are the subgroups of G of
finite index.



14 Introduction

Proof. If H is an open subgroup of G, then N < H for some N e N, so
that H is of finite index. If H is a subgroup of G of finite index, then H is
closed, by 0.4.1. But then the distinct cosets H, Hy,, ..., Hy, of Hin G are
closed, and H is open as the complement of the closed subset Hy, U ... U Hy,
of G. [

The following two corollaries are immediate consequences of the preceding
proposition. They relate the Krull Topology to the discrete and product
topologies (see E.0.85).

04.3 Corollary. A homomorphism f from G with the Krull Topology
to a group with the discrete topology is continuous if and only if the kernel
of fis a subgroup of G of finite index. []

0.4.4 Definition. Let X be a G-space and let G/X/G x X have the
Krull/discrete/product topology. If the product mapping G x X — X is
continuous, we say that G acts continuously on X.

0.4.5 Corollary. Let X be a G-space. Then G acts continously on X
if and only if the G-orbits in X are finite.

E.0 Exercises to Chapter 0

E.0.1 (Identity). Let S be a set with product x o y(x,y € .S). Show that
if e and f are identities of S, then e = f.
E.0.2 (Inverses). Let S be a monoid and let x € S. Show that if y and z
are inverses of x, then y = z.
E.0.3 (Inverses). Let S be a monoid. Show that

(@ (xoy)" =y ox~ and (x7)~ = x for x, ye S*;

(b) S* is a submonoid of S.
E.0.4 (Powers). Let S be a monoid and let T be the set consisting of the
powers x°, x', x%, ... of a fixed element x of S. Show that

(a) x™** = x™ o x™ and (x™)" = x™" for all nonnegative integers m, n;

(b) Tis submonoid of S.
Suppose that x € S* and let T’ be the set of powers x% x~1, x1, x~2, x%, ...
of x. Show that

(c) x™** = x™ o x" and (x™)" = x™ for all integers m and n;

(d) (x)~ = x~* for all integers n;

(e) T’ is a subgroup of S*.
E.0.5. Let S be a monoid and let xq,..., x, €S. Suppose that the x;
commute pairwise. Show that (x;... x,)* = x"... x,* for any non-
negative integer n. (If the x; are in S*, this equation holds for any integer n).
E.0.6. Show that there is a ring 4 which possesses precisely one element.
Such a ring is called a null ring. Show that any two null rings are isomorphic.

E.0.7. Let 4 be aring and suppose the zero element 0 of A4 is also the identity
element of A. Show that A4 is the null ring 4 = {0}.
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E.0.8 (Imbeddings). Let A and B be rings and let f: B — A be an imbedding
of B into 4, that is let f be an injective homomorphism from B into 4. Show
thatif 4 and Bare disjointand 4" = (4 — f(B)) U B, then 4’ can be regarded
as a ring such that the mapping f': 4' — A4 defined by f'(a) = aforac A’ — B
and f'(b) = f(b) for b € B is an isomorphism.
E.0.9 (Imbeddings). For any two sets 4 and B, there exists a bijective
function g from A4 to a set disjoint from B. Using this fact, show that if 4 and
Bare rings and f: B— A is an imbedding of B into A, then there exists a ring
A’ containing B as a subring and an isomorphism f’:4’— A4 such that
f'(d) = f(b) for b € B.
E.0.10 (Field of Quotients). Let 4 be an integral domain and let x/y =
{(w,v){ued, ved — {0} and xv = uy} for x4 and ye 4 — {0}. Let
K={x|y|xeAd,ye A — {0}}. Show that
(@) (x,y)ex/y(xed,yed — {0});
(b) if x/y % x'/y’, then x/y and x'/y" are disjoint (x,x' € 4, y,y’ € 4 —
{0h);
(c) x/y =x'/y'ifandonlyifxy’ = xy' = x'y(x,x' € A,y,y € A — {0});
(d) x/y = xz/yz(x €4, y,ze 4 — {0});
(e) if u/v = v'fv" and x/y = x'/y’, then (uy + xv)fvy = W'y’ + xV)v'y
and ux/vy = u'x'[v’y (w, ', x, x' €4, v,0',y,y € A — {0));
(f) K together with the products ufv + x/y = (uy + xv)/vy and
(u/v)(x/y) = ux/vy is a field with zero and identity elements 0/1 and
1/1 and inverses (x/y)~! = y/x (x/y € K — {0/1});
(g) the mapping f: 4 — K defined by f(x) = x/1 is an imbedding of 4
into K is a field of quotients of f(4).
E.0.11 (Field of Quotients). Show that every integral domain A has a field
of quotients. (Use E.0.9 and E.0.10). Show that if K and L are fields of
quotients of an integral domain A, then there exists an isomorphism f: K — L
such that f(a) = aforac A.

E.0.12. Letf: G— H be a mapping from a group G to a group H such that
f(xy) = f(x)f(y) for x, y € G. Show that f maps the identity element of G
to the identity element of H and f(x~) = f(x)~ for xe G.
E.0.13. Let 4 be a ring and let I be an ideal of 4. Show that 0 € I and that 7
is a subgroup of 4 as group with addition. i
E.0.14. Let 4 be a commutative ring and let x € 4. Show that x4 is an
ideal of A4.
E.0.15. Let Abearingandletly,..., I, beidealsof 4. Letl, + .-+ I,
be the set {x; + --- + x, | x;el, for 1 <i<n}andletl,... I, be the set
of all finite sums of products x; ... x, (x;€ I, for 1 < i < n). Show that
(@) I, + --- + I, is an ideal of 4 containing the ideals I, .. ., I,;;
(b) L, n--- N1, is an ideal of 4;
© I,...,I,is an ideal of 4 containedin I, N--- N I,.
E.0.16. Let R be a ring and let {R, | « € A} be a collection of subrings of R.
Show (Meca R, is a subring of R.



16 Introduction

E.0.17. Let S be an Abelian group and let T be a subgroup of S. Show that

(@) x + Tand x’ + T are either equal or disjoint (x, x’ € S);
) x+T=x"+Tifand only if x — x' e T(x, x' € S);
©@ifx+T=x"+Tand y+ T=y+T,then(x +y) + T = (x' +
V) + T,y x,y €S);
(d) S/T together with the product (x + T) + (y + T) = (x + y) + Tis
a group, the identity of S/Tis 0 + T where O is the identity of S and
the inverse of x + T is (—x) + T where —x is the inverse of x
(xes);
(e) the mapping f: S — S/T defined by f(x) = x + T is a surjective
homomorphism and Kernel f = T.
E.0.18. Let 4 be a ring, let I be an ideal of 4 and consider 4/] = {x + I|
x € A}. Show that
@ifx+I=x"4+Tand y+I=y + I then (xy) + I = (xy) + I
(x, 3, x', y" € A);
(b) A/Itogether with the products(x + I) + (y + I) = (x + y) + Iand
(x + ID)(y + I) = (xy) + Iis a ring, and the identity element of 4/
is e + I where e is the identity element of 4;
(c) the mapping f: A — A/I defined by f(x) = x + I is a surjective
homomorphism and Kernel f = I.
E.0.19 (First Homomorphism Theorem). LetAand Bberingsandf: 4 — B
a homomorphism. Show that
(a) if @ + Kernel f = a’ + Kernel f, then f(a) = f(a') (a, a’ € A);
(b) the mapping f: 4/Kernel f — f(A4) defined by f(a + Kernel f) = f(a)
is an isomorphism;
(c) A4 and A/{0} are isomorphic;
(d) fis injective if and only if Kernel f = {0}.
E.0.20 (Second Homomorphism Theorem). Let A be a ring, B a subring of
A, I an ideal of A. Show that B + I = {b + x|b € B, x € I} is a subring of
A and B N Iis an ideal of B. Show that there is an isomorphism f: B/B N I —
(B + DjI'such that f(b + BNI) = b + Iforall be B.
E.0.21. Describe and prove the analogues for groups of the First and
Second Homomorphism Theorems for rings.
E.0.22. Let 4 be a ring with ideal 4. Describe a natural bijection from the
set of ideals of A4 containing I to the set of ideals of A4/I.
E.0.23. Let 4 be a commutative ring with ideal 1. Show that
(a) Iis maximal if and only if 4/I is a field;
(b) Iis prime if and only if 4/I is an integral domain;
(c) A is a field if and.only if 4 5 {0} and the only ideals of 4 are {0}
and 4.
E.0.24. Let K be a field and let f(X), g(X) € K[X] — {0}. Show that
(a) Deg(f(X)g(X)) = Degf(X) + Degg(X);
(b) Deg(f(X) + g(X)) < Max (Degf(X), Deg g(X)) (the maximum of
the two integers Deg f(X) and Deg g(X)).
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E.0.25. The group of units of K[X], for K a field, is the set K* of nonzero
constant polynomials.

E.0.26. Let Kbea field, g(X) an irreducible element of K[X]and A,(X), ...,
hy(X)elementsof K[ X]suchthat g(X)divides ]? 4(X). Show that g(X) divides
h(X)for some i. Supposing, further, that g(X) and the 4(X)(1 < i < n) are
monic and irreducible, show that g(X) = A(X) for some i. Using these
observations, give the details to the proof of 0.1.5.

E.0.27 (Ring of Integers). A ring of integers is a ring Z having a nonempty
subset N closed under addition and multiplication and consisting of elements
denoted 1,2 =1+ 1,3 =2 + 1,... such that

1. (trichotomy) for x € Z, precisely one of the following possibilities
occurs: x = 0 (x is zero), x € N (x is positive), —x € N (x is negative);

2. (induction) if S is a subset of N containing 1 such that x € S implies
x+ leSforall xeZ, then S = N.

The axioms of set theory imply that there exists a ring of integers. Show that

(a) N is infinite (e.g. show that f(x) = x + 1 is injective but not sur-
jective from N to N):

(b) (order properties) letting x < y and x ¢ y, mean that y — xe N
and y — x ¢ N respectively, we have

(i) (trichtomy) for x, y € N, precisely one of the following possibili-
ties occurs: x =y, x < y,y < Xx;
(ii) (antireflexitivity) x £ x (x € Z);
(iii) (transitivity) x < yand y < z imply that x < z (x, y, z € 7);
(iv) (linearity) ¥ < v and x < y imply that u + x < v + y; and
0 < wand x < y imply that wx < wy (4, v, w, x, y € Z);

(c) (least element property) for any subset T of N, either 7 has a least
element or T is empty (consider S = N — T and use the induction
property of N);

(d) (universality property) for any ring 4 with identity element e, there is
a unique homomorphism f: Z — A (define f on N inductively by
() = e, fx + 1) = f(x) + e, define f(0) = 0 and define f(—x) =
— f(x) for x e N).

E.0.28 (Ring of Integers). Show that if Z and Z’ are both rings of integers,
then there is a unique isomorphism from Z to Z'. (Use the universality prop-
erty).

E.0.29 (Euclidean Algorithm). Let Z be the ring of integers and let a, b € N.
Show that there exist m, r € Z such that b = ma + r and 0 < r < a. (Use
the least element property to get a least remainder r).

E.0.30 (Ring of Integers). Show that the ring Z of integers is a principle
ideal domain. (Use the Euclidean Algorithm and compare with 0.1.2).

E.0.31 (Ring of Integers). For integers m and n, we say that a|b (a divides b)
if 5 = ma for some m € Z. A prime integer is an integer p > 1 such that q|p
ifand only ifa = + 1 or @ = + p. Show that for any prime p, p|xy implies
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p divides x or p divides y(x, y € Z) (compare with<0.1.4). Show that a positive
integer p is prime if and only if the ideal Zp is a prime ideal.

E.0.32 (Ring of Integers). Show that for any integer b > 1, b can be ex-
pressed uniquely as b = [P p;* where the p; are primes, the e; are positive
integers and p; < p; < -+ < pp. (Compare with 0.1.5).

E.0.33 (Ring of Integers). Let py, ..., p, be distinct prime numbers. Show
that p;+ (I T2 p; + 1) for | < i < n. Use this to show that there are infinitely
many prime numbers.

E.0.34 (Field of Rational Numbers). Let Q be the field of quotients of the
ring Z of integers. We call Q the field of rational numbers. Let P = {yx~1 | x,
y € N}. Show that

(a) P is closed under addition and multiplication and Q satisfies the
law of trichotomy with respect to P (see E.0.27);

(b) letting x < y and x £ y mean that y — x€ P and y — x ¢ P respec-
tively, then x < y (x, y € Q) satisfies the laws of trichotomy, anti-
reflexitivity, transitivity and linearity, and the order x < y(x, y € Z2)
in Z is preserved by the imbedding x > x/1 of Z in Q, that is, x < y
if and only if x/1 < y/1 for x, y e Z.

E.0.35 (Field of Real Numbers). An ordered field is a field K together with
a subset P closed under addition and multiplication such that X satisfies the
law of trichotomy with respectto P. Letx < yand x £ ymeanthaty — x€ P
and y — x ¢ P respectively and note that x < y (x, y € K) satisfies the laws
of trichotomy, antireflexitivity, transitivity and linearity. A sequence in K
is a function f from N to K and is denoted f3, f5, . . . where f; = f(i) (i€ N).
The set R(K) of sequences in K is a ring with respect to the addition and
multiplication defined by (f + g)(i) = f(i) = g(i) and (fg)(}) = f(D)g()
(ie N, f, g € R(K)). A sequence f; in K is convergent if there exists x € K such
that for each positive ¢ in K there exists Ne Nsuchthatx — e < f; < x + ¢
fori > N. A sequence f; in K is a Cauchy sequence if for each positive ¢ in X,
there exists N e N such that —e < f; —f; < efor i, j = N. If every Cauchy
sequence in K is convergent, then K is complete. Taking K to be the field Q
of rational numbers, show that

(a) the set of R, of Cauchy sequences in Q is a subring of R(Q);

(b) the set R, = {fe R(Q) | f converges to 0} is an ideal in Re;

(c) the ring R = Rc/R, is a field, called the field of real numbers, and R
together with R, = {f+ R, |f¢ Roand 0 < f; for all but finitely
many i} is a complete ordered field;

(d) the function « from Q to R which maps each x € Q to f + R, where
f is the constant sequence f; = x for all i is an imbedding of Q in R
mapping P to a subset of R, ;

(f) «(Q) is dense in R in the sense that for every positive  in R and every
y € R, there exists x € Q such that y — ¢ < o(x) < y + &;

(g) R is Archimedian in the sense that for x, y in P, there exists n in N
such that y < nx.

Can this discussion for Q be generalized to any Archimedian ordered field K ?
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E.0.36 (Field of Real Numbers). Show that any complete Archimedian
ordered field is isomorphic to the field R of real numbers. Does this imply that
every Archimedian ordered field is isomorphic to a subfield of the field R of
real numbers ?

E.0.37 (Field of Complex Numbers). Let R be the field of real numbers.
Show that C = R[X]/R[X](X2 + 1) is a field, called the field of complex
numbers. Show that 8: R— C, defined by B(x) = x + R[X](X2 + 1) for
x € R, is an imbedding of R in C. Show that C with addition and the scalar
multiplication x - z (x € R, z € C) defined by x-z = 8(x)zis a two dimensional
real vector space with identity e and basis e, i where i2 = —e. Thus, show that
C = {z|z = a-e + b-i with a, b € R}, that 8: R— C is given by B(a) = a-e
(a € R) and that multiplication in C is given by (a-e + b-i) (c-e + d-i) =
(ac — bd)-e + (ad + bc)-i(a, b, c,de R).

E.0.38 (Ring of Integers Modulo a@). Let a e N. Then we let Z, denote the
ring Z, = Z/Za and call Z, the ring of integers modulo a. Letting b = b + Za
forbeZ,showthatZ, = {0, 1, ..., a — 1}. Show that Z, is an integral domain
if and only if Z, is a field if and only if a is a prime.

E.0.39 (Unique Factorization Domains). Let 4 be a commutative ring.
We say that a|b (read a divides b) if b = m a for some m € 4. We write a+ b
if a does not divide b. If a|b and b|a, then a and b are associates. If b is non-
zero and b is not a unit, and if the only elements which divide » are units
and associates of b, then b is irreducible. We say that 4 is a unique factorization
domain if A is an integral domain and for each nonzero nonunit element b of
A4, b =[] b; where the by, ..., b, are irreducible and are unique in the
sense that if b = [ % ¢; where the ¢4, ..., ¢, are irreducible, then m = n and
b; is an associate of ¢, for 1 < i < m for a suitable permutation ¢;,, . .., ¢;,
ofthecy, ..., ¢y, Show that for an integral domain A4 to be a unique factoriza-
tion domain, the following two conditions are necessary and sufficient:

1. each nonzero nonunit element b of 4 has a factorization » = [} b,

where the b4, . . ., b, are irreducible;

2. if b is irreducible and b|xy, the b|x or b|y.
Show that in a unique factorization domain, @ and b are associates if and only
only if @ = bc where c is a unit.

E.0.40 (Unique Factorization Domains). Show that every principal ideal
domain is a unique factorization domain. (Compare with 0.1.4).

E.0.41 (Unique Factorization Domains). Let 4 be a unique factorization
domain. Then the greatest common divisor and least common multiple of
ch’r. .. bym and by'1... b, /n(e; = 0,f; =0 for all i; by,...,b, irredu-
cible and pairwise nonassociates, ¢ a unit) are b,% ... b, and b ...
b,"» respectively, where g; is the lesser of e, and f; and h; is the greater of e
and f; for all i. Elements a,, ..., a, of A are relatively prime if the greatest
common divisor of ay, . . ., a, is e (identity of 4). Show that if 4 is a principle
ideal domain, then a, ..., a, are relatively prime if and only if there exist
my, ..., m, in A such that e = mya; + --- + m,a,. (Note here that the



20 Introduction

greatest common divisor and least common multiple are only unique up to
associates).
E.0.42 (Direct Product). Let 4y,..., 4, be rings. Then 4 = A; X +-- X4,
together with the addition and multiplication defined by (ay,...,as) +
(b19 ceey bn) = ((11 + bl’ vy Qp + bn) and (al, “ ey an)(bl, e ey bn) = (a1b1
..., ayby) is a ring (called the direct product ring of Ay, . .., 4y).
E.0.43 (Direct Limit). Let 4 be a totally ordered set. Let {R,]a € A} be a
collection of rings and let{B,, | a, b€ 4anda 5 b}bea collection of functions
such that

1. Bye: Ro—> R, is a homomorphism fora £ b;

2. Bep© Boa for = Beofora £ b sc
Let R be the set of all functions f from A4 to | Jae4 R, such that f(a) € R, for
all ae A. Define f + g and fg for f,ge Rby (f + g)(@) = f(a) + g(a) and
(fg)(@) = f(a)g(a) (a € 4). Show that

(a) Ris aring, called the direct product of the R,. (Compare with E.0.42).
An element f of R is almost coherentif there exists ¢ € A such that B,.(f(@)) =
f(b) for ¢ < a £ b. Show that

(b) the set R, of almost coherent elements of R is a subring of R.
A null element of R is an element f of R such that for some c € 4, fla) =0
for ¢ < a. Show that

(c) the set R° of null elements of R is an ideal of R,.
Let R be the ring R,/RC. Define B,: R, — R by letting Bu(x) = f + R° where
fis the element of R, such that fley=0for c £a, flag=x and f(b) =
Bya(x) for @ £ b. Show that

(d) B, is a homomorphism of rings and the diagram

is commutative for a £ b (a, b € 4);

(€) R = Uaqea Ba(R,) (ascending union);

(f) if the R,(a € A) are fields, then the Ba(a € A) are injective and a field.
The ring R together with the functions Ba(a € A) is called the direct limit of the
functions By, on the rings R, and is denoted Lim B.

E.0.44 (Chinese Remainder Theorem). Let 4 be a principal ideal domain
with identity e, let a be a nonzero nonunit element of 4 and let a = [[i x;
where x, and x, are relatively prime for i # j. Let a; = a/x, and note that
a,, . .., a, are relatively prime, so that there exist m; € A such thate = mya; +
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-+ mpa, (see E.0.41). Let e, = ma;, so that e = e+ ---+ e, Let
A= Aldaand b = b + Aafor be A. Show that

(@ é=& +---+¢&,66,=0fori#jandé?=¢forl <i<n;

(b) 4 =42 + --- + 4z, (sum of ideals) and this sum is direct as a sum

" of additive groups;

(c) Ae, is a ring with identity &, and is isomorphic to 4/Ax;;

(d) 4/Aa is isomorphic to the direct product ring (A/Ax;)) x -+ x
(A/Ax,).

E.0.45 (Rings of Integers Modulo 4). Show that if g = p,%1 - p,f» where
P1, - - ., Py are distinct prime numbers and e, ..., e, are positive integers,
then the ring Z, of integers modulo a is isomorphic to Z,e; X -- - x Zyen
(direct product ring). (Use the Chinese Remainder Theorem).

E.0.46 (Simultaneous Congruences). Using the notation u=,v(u is con-
gruent to v modulo a) for v — u € Za (a, u, v € Z), show that if a = X1t Xy
where x; and x; are positive and relatively prime for i # Jand if uy, ...,
u, € Z, then

(a) there exists v € Z such that u, =,vforl <i<n;

(b) for v" € Z to also satisfy u; =, v for 1 <i < n, it is necessary and

sufficient that v =, v'.

(Use the Chinese Remainder Theorem).
E.0.47 (Euler Phi Function). For any integer a > 1, let ¢(a) be the number
of integers b such that b is relatively prime to aand 1 < b < 4. Show that

() @(a) is the number of units in Z,;
(b) p(aa’) = p(a)p(@) if a and a’ are relatively prime;
() #(p?) = p*~*(p — 1) for p a prime.

(Use the Chinese Remainder Theorem for (b)).

E.0.48 (Ideal Structure of Z,). Determine the maximal ideals of Z, for
a = p1°t- - p,°s (the p; being distinct primes and the e; positive integers).

E.0.49 (Unique Factorization in A[X]). Let 4 be a unique factorization
domain and let K be the field of quotients of 4. Show that the polynomial
ring A[X] = {f(X) € K[X] | the coefficients of f(X) are in A} is a unique
factorization domain. (Compare with 0.1.11).

E.0.50 (Eisenstein’s Criteria). Let f(X ) =2%a, X' be an element of
Q(X) and suppose that p is a prime number such that plas, .. .,plas, but
Ptao and p*ta, (a+b means that a does not divide b). Show that f(X)isirredu-
cible. (Consider a potential factorization f(X) = G b, Xk e, X°) where
p|by, and p+tc,, and consider a,, , where r is minimal such that pt+b,.)

E.0.51. Which of theﬂfollowing polynomials in Q[X] are irreducible ?
(&) X* - x2 4+ 1;
) X*+ X2+ X+ 1;
(© X +1;
(d X" —p (n=>1,pprime).
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E.0.52. Give necessary and sufficient conditions that X?" — X divide
X?™ — X in Z,[X], p being a prime.
E.0.53. Let k be a field and consider the polynomial X® + X + 1 e k[X].
Let I be the ideal k[X] (X® + X + 1). Show that for every f(X) e k[X],
F(X)+I=(aX?+bX+c)+ I for suitable a,b,cek uniquely deter-
mined by f(X). Express (X2 + 2X)'? + [Iin this form.
E.0.54. Let k be a field and let f(X) be a polynomial of degree n > 1. Show
that
(a) k[X]together with the obvious scalar multiplication is a vector space
over k containing k[X]f(X) as subspace;
(b) the quotient vector space k[X]/k[X]f(X) has basis 1 + I, X + I...
X! 4+ I where I = k[X]f(X).
E.0.55 (Free Abelian Monoids). Let S be a set. Show that there is an
Abelian monoid S containing S as subset such that

1. each element x of § can be written as x = 5,° - - - $,°» where the e
are nonnegative integers and s, . . ., S, are distinct elements of S;

2. if 54, . .., 5n are distinct elements of S and 5,°1 - - - 5,°m = Sf1e . syim
where the ¢, and f; are nonnegative integers, then e, = fifor1 < i < m.

This monoid S is called the free Abelian monoid on S. (Consider the set T
of functions from S to the set of nonnegative integers, make T into a monoid
and imbed S in T).

E.0.56 (Polynomial Rings). Let K be a field. Define K [X.]), K[ X1, X5] =
(KX DIXe), . .- K[ Xy, - Xo) = (K[X, .o X,_1D[X,] successively ac-
cording to 0.1 and E.0.49. Then K[X;,..., X,]is a ring consisting of the
polynomials in the indeterminants Xy, ..., X, and is called the polynomial
ring in n-variables over K. Show that

(@) K[Xy,..., X,] is a unique factorization domain;

(b) the set S of monomials X, - - - X, (the ¢, being nonnegative integers)
is closed under multiplication and is a free Abelian monoid on the
set S = {X1,..., Xu};

(c) Sis a basis for K[ Xy, ..., X;]. .

E.0.57 (Polynomial Rings). Let K be a field. The polynomial rings K[X3,
..., X,] are algebras over K. (See Appendix A). Show that the algebras
K[X1, ..., Xu] and K[X1] ® - - - @ K[X,] are isomorphic. (See Appendices
T and A).

E.0.58 (Group Rings). Let G be a group or monoid and let K be a field.
Show that there exists a vector space K[G] over K with basis G. Define
(ZQEG ayg)(ZheG bhh) = Zg.h €G aybh(gh) for Qg by e K(g, he G) Show that
K[G] with vector space addition and this multiplication is a ring (called the
group ring or monoid ring of G over K). Show that K [G] is an algebra over K
in the sense of Appendix A.

E.0.59 (Polynomial Rings). Let K be a field. Show that the polynomial ring

K[X,, ..., X,] is isomorphic to the monoid ring K [S] of the free Abelian.
monoid on S = {X;,..., X;}.
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E.0.60 (Group Rings). Let G and H be groups and X a field. Let K[G],
K[H], K[G x H] be the group rings of G, H, G x H (outer direct product).
Show that K[G x H] is isomorphic to K[G] ® K[H] (tensor product of
K-algebras). (See Appendix A.)
E.0.61. Let G be a group whose order is a prime number p. Show that
G=(g)forgeG —1. ~
E.0.62. Show that if G is a finite p-group, then the set G* = {g? | g€ G}
coincides with G only when G = 1.
E.0.63. Describe the noncyclic subgroups of Z, x Z, x Z,, p being a
prime number.
E.0.64. Describe the decomposition G = G, - - - G,, of 0.1 in each of the
cases

(a) G = Z5, (as additive group);

(b) G = Zys x Z;; (as additive group);

(©) G =12y x Z;; x Z, (as additive group).
E.0.65. Let G be a commutative group, g, # elements of G of finite orders
m, n. Show that

(@) <g> = (g% if d and m are relatively prime;

(b) if m and n are relatively prime, then <g, h) = {gh) = {g>{h>

(internal direct product).

E.0.66. Let G be an Abelian group whose order is mn and n are relatively
prime. Show that G = G,G, (internal direct product) when G, and G, are
subgroups of G of orders m and n respectively.

E.0.67. LetG = G,G, (internal direct product) where G, G, are subgroups
of G of orders m, n respectively. Show that if m and n are relatively prime,
then every subgroup H of G has the form H = H,H, where H, < G,, and
H, < G,.
E.0.68. Let G be a group with subgroup H, and let x, y € G. Show that
(a) xH = yHifand only if x~'ye H;
(b) xH and yH are disjoint if x~' y ¢ H;
(c) the function L,: G — G defined by L,(y) = xy for y € G is a bijective
function which maps H to xH.

E.0.69. Let G be a group, H a normal subgroup of G. Show thatif xH = x'H
and yH = y'H, then (xy)H = (x'y’)H. Show that G/H together with the
product (xH)(yH) = (xy)H is a group with identity H and inverses (xH)~ =
x"H(xeG).

E.0.70. Let G be a group and let H and I be normal subgroups of G such
that H N I = 1. Show that the elements of H commute with the elements of I.
Show, in particular, that if p and g are two different prime numbers such that
G, and G, are subgroups of G, then the elements of G, commute with the
elements of G,.

E.0.71 (Second Homomorphism Theorem). Let G be a group and let N be
a normal subgroup of G. Show that for any subgroup H of G, the mapping
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f: H/N 0 H~—> NH|N mapping x(N N H) to xN(x € H) is well defined and
is an isomorphism from H/N N H to NH|N.
E.0.72 (Semidirect Products). Let H be a group and let o: H— Aut Nbea
homomorphism from H to the group Aut N of automorphisms of a group N.
Show that N x H together with the product (u, x)(v, y) = (ua(x)(v), xy) is
a group (called the semidirect product of N and H with respect to «). Show that
if G is a group, H is a subgroup of G and N is normal subgroup of G such that
NN H = 1, then the mapping f: N x H— NH defined by flu, x) = ux is
an isomorphism from N x H (semidirect product) to NH where o: H —
Aut N is defined by a(x) = Int x|y for x € H. If G = NH where H is a sub-
group of G and N is a subgroup of G such that NN H = 1, we therefore
write G = NH (internal semidirect product).
E0.73. Let N=127, x Z, x --- x Z, (n times). Let H = S(n). For ceH
and (ay,...,a,) €N, let a(o)(ay, ..., @) = (@o1yy - - +» Qo). Show that a is
a homomorphism from H to Aut N. Describe the center of the group N x H
(semidirect product).
E.0.74 (Solvable Groups). Let G be a group. An Abelian tower in G is a
tower 1 < G; < --- © G, = G such that G, is normal in G, ; and G;,/G;
is Abelian for 1 < i < n — 1. Show that G is solvable if and only if G has
an Abelian tower.
E.0.75 (Commutator Subgroups). Let G be a group. The commutator
subgroup of G is the subgroup G of G generated by the commutators
xoy = x~1y~1xy (x, y € G). Show that G* is a normal subgroup of G such
that G/G® is Abelian, since (yx)x o y = xy (x, y € G). Define G4+ = GOV
for i = 1,2,.... The series G © G D G® > --- is called the commutator
series. Show that G® is a normal subgroup of G for all i.
E.0.76 (Solvable Groups). Show that

(a) G is solvable if and only if G™ = 1 for some 7;

(b) for any normal subgroup N of G, (G/N)® = NG®|N for all i;

(¢) for any normal subgroup N of G, G is solvable if and only if N and

G/N are solvable.

E.0.77. Show that S(3) is not nilpotent.
E.0.78 (Nilpotent Groups). Show that a finite group G such that G/C(G)
is nilpotent is itself nilpotent. Show that if G is a finite nilpotent group and
G # 1, then C(G) # 1.
E.0.79 (Nilpotent Groups). Show that every finite p-group is solvable. Use
this to show that every finite nilpotent group is solvable.
E.0.80 (p-Groups). Let G be a group of order p" where p is a prime and
n > 1. Show that G has precisely one subgroup of order pr L
E.0.81. Let G be a finite Abelian p-group and K the field Z, of p elements.
Show that K[G] has only one maximal ideal.
E.0.82. Let X be a set and let F(X, X) be the set of functions from X to X.
Show that F(X, X) together with the product g o f° (composition of functions)
is a monoid and that the group F(X, X)* of units of F(X, X) is the set of
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bijective functions from X to X. Show that if G isa group and X is a G-space,
then the mapping p: G— F(X, X) defined by p(g)(X) = gX for ge G
x € X is a homomorphism from G into F(X, X)*.

E.0.83. Show that S(4) is solvable by showing that S(4) has a cyclic tower
S(4) © A(4) > N> 1 where N is an Abelian subgroup of 4(4) having
4 elements.

E.0.84. Show that A(5) and 1 are the only normal subgroups of A(5).
(Letting N # 1 be a normal subgroup of A4(5), whow that N is transitive on
{1, 2, 3,4, 5}. Then show that the order of N is divisible by 5 and that N
contains a 5-cycle. Use this to show that N = A4(5)).

E.0.85 (Topologies). Let X be a set. A topology for X is a collection U of
subsets of X such that
1. XeU and g €U (@ being the empty set);
2. if U, (e € 4) are elements of U, then | J,e 4 U, is an element of U;
3.if U,VeU,then Un Ve U.
A base for X is a collection U, of subsets of X such that if U, ¥ € U,, then
U N Ve U,. Show that

(a) the set U of all subsets of X is a topology for X (called the discrete
topology for X);

(b) for any base U, for X, the set U consisting of X, @ and all sets of the
form ( qc4 U, where the U, (« € A) are elements of U, is a topology
for X(Uj is called a base of open sets for the topology U);

(c) for U a topology for the set X and V a topology for the set Y, the
collection Wy = {U x V| UeU, Ve V}is a base for X x Y (and
the topology W for X x Y having W, as base of open sets is called
the product topology for X x Y).

E.0.86 (Topological Spaces). A topological space is a set X together with a
topology U. A subset U of a topological space X is open if Ue U. A subset
C of Xis closed if X — C is open. The closure of a subset S of X is the inter-
section S of all closed subsets of X containing S. Show that

(a) if C, (x€ 4) is a collection of closed subsets of X, then (,c4 C, is
a closed subset of X;

(b) if C and D are closed, then C U D is closed;

(c) the closure S of any subset S of X is closed.

E.0.87 (Kru/ll Topology). Let G be a group and let N be the set of normal
subgroups of G of finite index. Show that U, = {Ny|Ne N, y € G} is a base
for G. Show that the Krull topology U for G (the topology having U, as base
of open sets) has the property that the closure of a subset S of G is (\yenx NS.
E.0.88 (Cayley’s Theorem). Every group G is isomorphic to a subgroup of
the group S(G) of bijective linear transformations of G (Hint: For g€ G,
consider the function L,: G — G defined by L,(x) = gx for x € G).

E.0.89. Every finite group G is isomorphic to a subgroup of S,, for any
integer n > G:1. (Hint: Use the preceding exercise, and embed S,, in S,
forn = m).



1 Some elementary field theory

In this chapter, we develop some of the basic theory of fields. We also
describe the structure of an arbitrary field extension K/k (see 1.1.5) in terms
of an algebraic field extension K/k' (see 1.2) and a purely transcendental
field extension k’fk (see 1.6.4, 1.6.13). Throughout the chapter, K denotes
a field.

1.1 Preliminaries

IfS is a collection of subrings (respectively subfields) of K, then (Mzes E is
a subring (respectively subfield) of K (see E.0.15). In particular, the inter-
section m(K) of all subfields of K is a subfield of K.

1.1.1 Definition. The subfield 7(K) of K is called the prime field of K. It
K = =(K), we say that K is a prime field.

If nis a positive integer and x € K, welet nx = x + -+ + x(n times). We
let (—n)x = —(nx) and Ox = 0. The mapping ¢: Z #(K) from the ring Z
of integers into the prime field 7(K) of K defined by ¢(n) = nl, 1 being the
identity element of K, is a homomorphism. The kernel I of ¢ is a prime ideal
since the image of @, being in the field =(K), is an integral domain. Thus, either
I = {0} and o is injective, or I is the set of multiples of a prime number p (see
E.0.31). In the former case, one shows easily that

{mD(1)~t | m,neZ,n # 0}

is a subfield of m(K) isomorphic to the field Z, =Q = {mn~* | myneZ,
n # 0} of rational numbers (see E.0.11, E.0.34), and this subfield must be
m(K) itself. In the latter case, the image subring {ml | m € Z} is isomorphic to
the field Z, = Z/I of p elements, so that #(K) ="{m1 |m=0,1,...,p — 1}
and =(K) is isomorphic to Z,. We state this for future reference.

1.1.2 Proposition. The prime field =(K) of a field K is isomorphic to
Z, = Q or to Z, for some prime number p.

The above proposition says that the prime fields, up to isomorphism, are
the fields Z, = Q and Z,, p a prime number.

1.1.3 Definition. The characteristic of K is 0 if m(K) is isomorphic to
Z, and is p if =(K) is isomorphic to Z,, p a prime number. The characteristic
of K is denoted Char K.

In order to simplify later statements, we introduce an alternative to the
notion of characteristic.

26
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1.14 Definition. The exponent characteristic of K is 1 if n(K) is iso-
morphic to Z, and is p if #(K) is isomorphic to Z,, p a prime number. The
exponent characteristic of X is denoted Exp Char X.

If K is a field of exponent characteristic p, then the mapping 7 : K — K,
defined by #(x) = x®, is a homomorphism, since the only nonzero terms in
the binomial expansion of (x + y)? are x?, y* (see E.1.2). This homomorphism
is called the Frobenius homomorphism of K.

Now let X be a field, k a subfield of X. Since X has the structure of addi-
tive group and, since products of elements of k with elements of K satisfy the
conditions for a scalar product, we may regard K as a vector space over k.

1.1.5 Definition. An extension field (or extension) of k is a field K con-
taining k as subfield together with the vector space structure over k described
above. Such an extension field is denoted K/k or K. The degree of an extension
K|k is the dimension of K over k. A subextension of an extension K of k is an
extension k' of k such that k’ is a subfield of K.

1.1.6 Definition. If K, and K, are extension fields of k, a k-homomor-
phism|k-isomorphism from K, to K is a homomorphism/isomorphism from
K, to K, which is k-linear (see 0.1.1, E.1.1).

If V is a vector space over K, then ¥ may be regarded as a vector space
aver the subfield k of K. We then have the following transitivity property of
dimension, V:K being the notation for the dimension of ¥ as vector space
over K.

1.1.7 Proposition. Let V be a vector space over K, k a subfield of K.
Then (V:K)(K:k) = V:k. In fact, if {e, | a € A}, {, | b € B} are bases for V'
over K and K over k respectively, then {e,f, | a € 4, b € B} is a basis for V

over k. -
/

Proof. 1In this proof, it is to be understood that only finitely many co-
efficients in a summation are nonzero. With this in mind, let v = 3, v,e, be a
typical element of ¥, the v, being in K. Then let v, = 3, v4, /3, the v, being in
k. Then v = 3, , vge,fo. Thus, {e,f, | a€ A4, b € B} spans ¥ over k. Next,
suppose that >, , vs,e.fy = 0. Then we have 3, (5, vapfo)es = 0, so that
b Vanfy = 0 for all a € 4, by the independence of the e,’s. Hence, v,, = 0 for
all a € 4, b € B, by the independence of the f,’s, and the e, f, (a € 4, b € B) are
independent over k. This establishes the second assertion. The first follows
from the second. [

We now let K/k be a field extension.

1.1.8  Definition. For S < K, we let k(S be the k-span of S in K, k[S]
the intersection of all subrings of K containing k and S and k(S) the inter-
section of all subfields of K containing k and S.

Obviously k{S> < k[S] < k(S). All three are k-subspaces of K, k[S]is a
subring and K(S) a subfield of K.
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1.1.9 Proposition. k{S> = Ures k{T, k[S] = Ures k[T] and k(S) =
Ures k(T) where S is the set of finite subsets of S.

Proof. The containment > is clear. Since the right hand side contains S,
it suffices for the containment < to show that the right hand side is a k-
subspace, subring containing k or subfield containing k respectively. But this
is obvious, since the finitely many elements of S which one needs to consider
form a finite set 7. [J

It is convenient to introduce an alternate notation when S is finite.

1.1.10 Definition. Let si,...,5,€K. Then k{sy,...,s,> = k<(S),
k[si,..., 8,] = k[S]and k(sy, . .., $,) = k(S) where S = {51, ..., s.}.

Any extension K of a field k can be built by constructing a finite or trans-
finite tower k < k(s;) < k(sy)(s5) < --- of “simple” extensions, which we
now define and describe.

1.1.11 Definition. 1If K = k(s), then K/k is a simple extension of k and
s is a primitive element of the extension K/k.

To determine the simple extensions, let K = k(s) and let k[ X] be the ring
of polynomials g(X) in the indeterminant X with coefficients in k. Consider
the evaluation homomorphism ¢ : k[ X'] — k[s], that is, the mapping sending
a polynomial g(X) = 3 b, X" in k[X] into the element g(s) = > b;s* of kl[s]
(see 0.1.6). The kernel I of ¢ is a prime ideal, since the image of ¢ is an
integral domain (being contained in the field X). Thus, I = {0}, in which case
no nonzero polynomial in k[X] vanishes at s; or I is the set of multiples of
an irreducible polynomial fy(X) vanishing at s, which we may take to be
monic (see 0.1).

Note that every polynomial in k[ X] vanishing at s is divisible by fy(X) and
that f,(X) is unique.

1.1.12 Definition. In the case I = {0}, s is transcendental over k. Other-
wise s is algebraic over k and f(X) is the minimum polynomial of s over k.

If s is transcendental over k, one shows easily that {g(s)h(s)~! | g(X),
h(X) € k[ X], h(X) # O} is a subfield of k(s) k-isomorphic to the field k[X], of
quotients of k[X] (see E.0.10) and this subfield must be k(s) itself. If s is
algebraic over k, then the image subring {g(s) | g(X) € k[XT} is isomorphic to
k[X];, = k[X]/I. And k[X];, is a field since I, being an ideal in a principle
ideal domain generated by an irreducible element, is a maximal ideal (see
0.1.3). Thus, k(s) = {g(s) | g(X) € k[X]} and k(s) is k-isomorphic to k[X];,.
(The field k is imbedded in k[X];, in a natural way, so that we may regard
k[X];, as an extension of k.) It follows that k(s) = k[s] and that 1, s, ..., s"~*
is a basis for k(s) over k, where n is the degree Deg f,(X) of f(X). We now
have proved the following proposition.

1.1.13 Proposition. Let k be a subfield of K, s € K. If s is transcendental
over k, then k(s) is k-isomorphic to the field of quotients k[ X], of k[ X]. If s is
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algebraic over k, then k(s) is k-isomorphic to the quotient ring k[X],,,
k(s) = k[s] = k(1,s,...,s" > and k(s):k = n where n = Deg f(X). [

The above proposition shows that the simple extensions of k are, up to
k-isomorphism, the extensions k[X], and k[ X ], f(X) an irreducible element
of k[ X].

We finally consider briefly the construction of roots of a polynomial f(X)
in k[X]. (See E.1.5).

1.1.14 Definition. Given a field k and a polynomial f(X) in k[ X], a root
field of f(X) over k is a field extension K of k of the form K = k(s) where

f(s) = 0.

1.1.15 Proposition. Let k be a field, f( X) a nonconstant polynomial in
k[X]. Then f(X) has a root field over k.

Proof. Let g(X) be an irreducible factor of f(X) in k[X]. Then K =
k[X], is a root field for g(X) over k. But any root field for g(X) is a root field
for f(X). Thus, f(X) has a root field over k. [J

If f(X) is irreducible, root fields of f(X) are unique up to isomorphism,
which we now show.

1.1.16 Deﬁ}tition. Let p be a homomorphism from a field & to a field k.
Then we let ¢ also denote the extension of ¢ to the homomorphism
@: k[X]1— k'[X] such that (St a,X?) = 33 p(a) X' for 5% a, X' e k[X] (see
E.1.3). :

1.1.17 Proposition. Let k be a field, £(X) an irreducible polynomial in
k[XT]. Let ¢: k — k' be an isomorphism, let K, K’ be root fields for f(X) over
k and @(f(X)) over k' respectively and let s, 5" be roots of f(X), ¢(f(X)) in
K, K’ respectively. Then ¢ has a unique extension to an isomorphism ¢ from
K to K’ such that ¢(s) = s":

Proof. Let s be aroot of f(X)in K, s’ a root of ¢(f(X)). Then K = kls],
K’ = K'[s'] and o3 ais) = 3 ¢(a;)s" defines an extension of ¢ to an iso-
morphism from K to K’. (This mapping is well defined since ¢: k[X] — k'[X]
maps I onto I’ where I, I’ are the kernels of the k-homomorphisms k[ X] —
k[s], K'[X]— k'[s'] mapping X to s and X to s’ respectively.) The unicity of
the extension is obvious. []

1.2 Algebraic extensions

Throughout this section, k denotes a field, K an extension field of k. The
following proposition is used later in describing subrings of K containing k.
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1.2.1 Proposition. Let A be an integral domain containing k as subfield
and suppose that A:k < oo. Then A is a field.

Proof. Let a be a nonzero element of 4. Then the left translation a;, of a
in A, defined by a;(b) = ab for b € A, is k-linear. It is injective, since A is an
integral domain. Thus, it is surjective and a,(x) = 1 has a solution x. Now
ax =1and ais a unitin 4. []

1.2.2 Proposition. Let s € K. Then s is algebraic over & if and only if s
is contained in some finite dimensional extension k' of k contained in K.

Proof. 1t suffices to show that s is algebraic over k if and only if k(s):k
is finite. But this is true, almost by definition (see 1.1.12). []

1.2.3 Proposition. Let S be a finite subset of K. Then the elements of S
are all algebraic over k if and only if A(S):k < oo.

Proof. One direction is clear. We prove the other by induction on the
number n of elements of S. If n = 1, we apply the above proposition directly.
If n > 1, let s€ S. Then k(s)(S — {s}):k(s) < oo and k(s):k < oo, by induc-
tion. Since k(S) = k(s)(S — {s}), it follows from the transitivity of dimensions
that k(S):k < oo.

1.2.4 Definition. K is algebraic over k (or K/k is algebraic) if s is
algebraic over k for every s € K.

1.2.5 Proposition. Let S be a set of elements of K which are algebraic
over k. Then k(S) = k[S] and k(S)/k is algebraic.

Proof. Let S be the set of finite subsets of S and let T€S. Then
k(T):k < oo and k(T)/k is algebraic, by 1.2.3. Now k(T) = £[T], by 1.2.1.
It follows that k(S)/k is algebraic and k(S) = k[S], since k(S) = Ures £(T)
= Ures K[T] = k[S], by 1.1.9. [

It follows from the above proposition that the set k, = {s€ K| s is
algebraic over k} is a subfield of K containing k. Thus, k. is an algebraic
extension of k.

1.2.6 Definition. kg, is the algebraic closure of k in K.
We now prove a transitivity theorem for algebraic extensions.

1.2.7 Proposition. Let k' be a subfield of K containing k. Then Kk is
algebraic if and only if K/k' and k'[k are algebraic.

Proof. One direction is trivial. Next, suppose that K/k' and k'[k are
algebraic and let s € K. Let f(X) = X% a;X* be the minimum polynomial of
s over k' and let k" = k(ao, ..., a,). Since k'[k is algebraic, k":k < oo by
1.2.3. But k"(s): k" < oo, since s is algebraic over k”. Thus, k"(s):k < co and
s is algebraic over k. Thus, K/k is algebraic. [

We conclude this section with the following proposition on groups G of
automorphisms of K. In the proposition, K¢ is the subfield {x € K| o(x) = x
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for o € G} of fixed points of G in K, Gx is the orbit {o(x) | o € G} of x under G
for x € K and Rootsg f(X) is the set of roots of f(X) in K for £(X) € K[X].

1.2.8 Proposition. For f(X)e K°[X1], Rootsg f(X) is G-stable. An
element x € K is algebraic over K¢ if and only if the G-orbit Gx of x in K is
finite. .

Proof. 1f f(X)e K°X] and x e Rootsg f(X),c€G, then f(o(x)) =
o(f(x)) = 0(0) = 0 and o(x) € Rootsg f(X). Thus, Rootsg f(X) is G-stable.
In particular, if x is algebraic over K¢ and f,(X) is the minimum polynomial
of x over K¢, then the G-orbit Gx of x is a subset of Rootsg f,(X) and is
therefore finite. Suppose, conversely, that Gx is finite, and let Gx = {X15 .oy X}
and f(X) =11 (X — x)). For o € G,

o(F(X)) = H o(X - x) = H (X — ox)) = I:I X - x) = £(X).

Thus, f(X) € K°[X]. Since x is a root of f(X), x is therefore algebraic over
K¢ 0

7

1.3 Splitting fields
Let k be a field, P < k[X], £(X) € k[X].

1.3.1 Definition. f(X) splits in the extension field K of k if f(X) =
¢ [12 (X — x;) for suitable ¢, x, € K.

1.3.2 Definition. An extension field K of k is a splitting field for P over
k if
f(X) eP = f(X) splits in K;
2 K = k(Rootsg P) where Roots, P is the set {s € K | f(s) = 0 for some
f(X) e P} of roots of P in K.

An extension field X of k is a splitting field for f(X) over k if it is a splitting
field for the one point set {f(X)} over k.

Note that the second condition simply insures that X is as small an exten-
sion of k satisfying condition 1 as possible. It insures in particular that K/k is
algebraic, by 1.2.5.

The following proposition follows from the unique factorization property
of elements of K[X].

1.3.3 Proposition. Let K be a splitting field for P over k and let X’ be
an extension field of K. Then Rootsy. P = Rootsg P. [J

Splitting fields for f(X) are constructed by induction from root fields for
f(X). The splitting fields for P are constructed by transfinite induction. Iso-
morphisms between any two such splitting fields are constructed similarly.
We now give the details of these constructions.

1.3.4  Proposition. There exists a splitting field for £(X) over k. If ¢ is
an isomorphism from k to a field &’ and if K, K’ are splitting fields for f(X)
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over k and ¢(f(X)) over k' respectively, then ¢ has an extension to an isomor-
phism & from K to K':

In particular, any two splitting fields for (X)) over k are k-isomorphic.

Proof. The proof is by induction on #n = Deg f(X). For n = 1, there is
nothing to prove. Next, let n > 1 and let k, be a root field for f(X) over k.
Then k, = k(s,) where f(s;) =0. Now f(X) = (X — s,)fi(X) where
Si(X) € ky[X].

. K
fux)/
b s

N

k

By induction, f1(X) has a splitting field K over k,. Now

AX) = cﬁ;(x— )

for suitable ¢, s, € Kand K = k,(s3, . . ., §,). Thus, f(X) = ¢ []% (X — s,) and
K = k(s1, . .., 8,), so that K is a splitting field for £(X) over k. Suppose next
that ¢: k — k' is an isomorphism and that K, K’ are splitting fields for f(X)
over k and ¢(f(X)) over k' respectively. Take sy, k1, f1(X) as before. Then
f(X) = g(X)h(X) where g(X) is the minimum polynomial of s, over k and
h(X) € k[ X]. Let 57 be a root of p(g(X)) in K’. Then ¢ has an extension to an
isomorphism ¢: k(s;) — k(s1) such that ¢(s,) = s7, by 1.1.17.

K ——-——q-)————-* K’
£ | .| e(AX)
¥ olky)
l I

k ———— K

Now K, K’ are splitting fields for f,(X) over k; and ¢(f1(X)) over ¢(k,)
respectively, so that ¢ has the desired extension @ by induction. [J

1.3.5 Theorem. There exists a splitting field K for P over k. If ¢ is an
isomorphism from & to a field &’ and if K, K’ are splitting fields for P over k
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and ¢(P) over k' respectively, then ¢ has an extension to an isomorphism &
from K to K'. In particular, any two splitting fields for P over k are k-
isomorphic.

Proof. Suppose first that ¢ is an isomorphism from &k to k" and that
K, K’ are splitting fields for P over k£ and ¢(P) over k'. For S < P, let Ky =
k(Rootsg S) and Kz = k'(Rootsg. (S)). Note that Kg, Kg are splitting fields
for S over k and for ¢(S) over k. Let 4 = {(S,«) | S < P and « is an iso-
morphism from Kg to Kg extending ¢} and let J be the partial order on 4
defined by letting (S, «) < (T, B) if S = T and Blgg = « (see S.4).

It is easily seen that every chain in 4 has a least upper bound in 4, so that
A has a maximal element (S, «), by Zorn’s Lemma (see S.4). Suppose that
SgPandletfeP — S.Let T = S U {f} and note that Ky, Ky are splitting
fields for f over Kg and ¢(f) over K¢ respectively. By 1.3.4, the isomorphism
o: Kg— K§ can be extended to an isomorphism B: Ky — Kyp. But then
(S, o) & (T, B), contradicting the assumption that (S, «) be maximal. Thus,
S = P. But then Kg = K and K§ = K'. Thus, o is an isomorphism from K
to K’ extending p and we may .let § = o.

We next prove by transfinite induction that P has a splitting field X over k.
For this, we take a well ordering < of P (see S.5). We may assume without
loss of generality that P has a last element (otherwise, the original well
ordering could be modified by placing the first element last, so that the second
element becomes first, the third element second and so forth). Let P, =
{geP | g <X f}for feP and note that P = P, when fis the last element of P.
It therefore suffices to show that for each f € P, P, has a splitting field over k.
If £ is the first element of P, then P, = {f} and P, has a splitting field over k,
by 1.3.4. Assume next that fis not the first element of P and that for each

= fin P, there exists a splitting field K, for P, over k. We assert that P, has
a splitting field over k. For this, let 4 be the set of all pairs (g, B) where g < f
and where Bis a set {Byo |a 2 b 2 g} of k-isomorphisms B,,: K, — K, such
that B © Bye = Peo for all a 'é b § ¢ 2 g. Let d be the partial order on 4
defined by (g, 8) I (h, y)if g < h and y,, = By, foralla 2 b 2 g.

For each (g, B) € 4, the direct limit Lim 8 of the fields K, (b 2 g) (see
E.0.43) is a field extension of k of the form Lim 8 = Uszo By(Ky) where the
B, are k-homomorphisms from the K, into Lim B such that the diagram

K b
Poe | T
ba im B
5

is commutative for a £ b ¥ g. Since K, is a splitting field for
P,={acP|a<b}
for b X g Lim B = Ubz, Bo(K>) is a splitting field for
P, —{g) = b€ P| b= g} = Ung, P
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Letting K, be a splitting field for g over Lim B, we therefore obtain a splitting
field K, for P, over k containing Lim B. Suppose that g X fand let g’ be the
element of P which immediately follows g. The field extensions K, and K, are
k-isomorphic by the part of 1.3.5 which we have already proved. We may
therefore fix a k-homomorphism :/x from Lim B into K, and define B;,
(a = b < g) by Bba ¢' Iga (a g) and Igba Igba (a -3 b < g) Then
(g, ,3) € A as one sees from the commutative diagram
—@
I / K, «— Lim 8
M
Ba
and (g, B) < (g’, B). Each chain (g;, B;) (i€ ]) in 4 has a least upper bound
(& B)in A. In fact, g is the first element of P such that g; < g for allie I and
B is the set of k-homomorphisms B,, (@ & b £ g) such that B, = (B:), for all
afx b3 g for all iel. By Zorn’s Lemma A therefore has a maximal
element We have seen that (g, f) is not maximal if g X f. Thus, 4 has a
maximal element of the form (f, «). But then K, (constructed as was K,
earlier) is a splitting field for P, over k, which proves our assertion. We have
now proved by transfinite induction that P, has a splitting field over & for all
f€P. Since P = P, when f is the last element of P, P has a splitting field
overk. []
1.4 Algebraic closure

Let k be a field.

1.4.1 Definition. An extension K of k is an algebraic closure of k if K[k
is algebraic and the only extension K’ of K such that K'/k is algebraic is
K’ = K.If k is an algebraic closure of itself, then we say that k is algebraically
closed.

Note that the algebraically closed fields k are those fields k such that K is
the only algebraic extension of k.

1.4.2 Theorem. The algebraic closures of k are the splitting fields of
k[X] over k. In particular, k has an algebraic closure and any two algebraic
closures of k are k-isomorphic.

Proof. Let K be a splitting field of k[ X] over k and let K’ be an extension
of K such that K’/k is algebraic. Then K’ = Rootsg. k[X] = Rootsg k[X] =
K, by 1.3.3, and K is an algebraic closure of k. Conversely, let K be an
algebraic closure of k. Let K’ be a splitting field of k[ X] over K. Then K’ /K is
algebraic, so that K'/k is algebraic. Thus, K’ = K and K is a splitting field
for K[X] over K. Since K/k is algebraic so that K = k(Rootsg k[X]), Kis a
splitting field of k[X] over k. []
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1.4.3 Corollary. k is algebraically closed if and only if each f(X) € k[ X]
has the form f(X) = ¢ [; (X — &;) for suitable s, € k.

1.4.4 Definition. k,,, denotes an algebraic closure of k.
We now prove a number of simple properties of the algebraic closure.
1.4.5 Proposition. k,, is algebraically closed.

Proof. Let K’ be an algebraic extension of k... Then K'/k is algebraic,
by the transitivity of algebraic extensions. Thus, K’ = k.. It follows that
kaig is algebraically closed. []

1.4.6 Proposition. Let k' be an algebraic extension of k. Then k), is an
algebraic closure of %.

Proof. kjisalgebraically closed, and k), /k is algebraic by the transitivity
of algebraic extensions. [

1.4.7 Corollary. If k' is an algebraic extension of k, then there exists
a k-isomorphism from k' to a subfield of k.

Proof. Use the preceding proposition and the proposition that any two
algebraic closures of k are k-isomorphic. [J

1.4.8 Proposition. 1f k' is an extension of k contained in &y, then &,
is an algebraic closure of k',

Proof. k, is algebraically closed and k,,./k’ is algebraic. [

We conclude this section with a brief discussion of the group G =
Autyk e of k-automorphisms of the algebraic closure k ;. of k. Note that the
k-linearity of o € G is equivalent to the condition o(s) = s for s € k. In fact
the set k$,; = {s € ke | o(s) = s for all o € G} is an extension field of k. The
extensions k§/k and k. /k$ . play an important role in Galois theory, and
we describe them at the end of the section.

1.4.9 Theorem. The set Roots f(X) of roots of f(X) in k,,. is G-stable
(see 0.3) for f(X)ek[X]. If f(X) is irreducible, G acts transitively on
Roots f(X).

Proof. Let o € G and s € Roots f(X). Then we have f(o(s)) = o(f(s)) =
o(0) = 0, since f(X) € k[X] (see E.1.3). Thus, Roots f(X) is G-stable. Sup-
pose next that £(X) is irreducible and let s, s' € Roots f(X). Then there exists
a k-isomorphism o; from k(s) to k(s’) such that a,(s) = &', by 1.1.17. But then
o, has an extension to an isomorphism ¢ from the splitting field k,,, of k[ X]
over k(s) to the splitting field k,,, of k[ X] over k(s"), by 1.3.5. Now o € G and
o(s) =s". []

1.4.10 Corollary. The orbits of G in ky,, are finite. [

The following proposition is closely related to the above proposition and
corollary.
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1.4.11 Proposition. Let K be a finite dimensional extension of k. Then
the set Hom,, (K, k,;¢) of k~-homomorphisms from K into kg is finite.

Proof. Lets,,...,s, be abasis for K/k. Then for ¢ € Hom,, (K| k,,g), We
have o(s;) € Rootsy,,, f,,(X) for 1 < i < n, as in 1.4.9. But ¢ is completely
determined by its values at s,, . . ., 5, and, by what we have just seen, there are
only finitely many possibilities for these values. Thus, Hom, (X, k) is
finite. [

1.4.12  Proposition. kS, = {s € kp, | fs(X) has only one root in kay},
where f,(X) denotes the minimum polynomial of s over k for s € k.

Proof. This follows directly from 1.4.9. []

1.4.13 Proposition. For s € k), the minimum polynomial f(X) of s
over k§¢ has distinct roots and Roots f(X) is the orbit of s under G (see 0.3).

Proof. Let {si,...,s,} be the orbit of s under G, and let g(X) =
[Tf (X — s). For o € G, we then have

o(g(X)) = r[ o(X — 5) = H (X = ofs)) = H X — 5) = g(X),

so that g(X) € k§[X] (see E.1.3). Since g(s) = 0, it follows that /(X)) divides
g(X). And, since Roots f(X) is G-stable and contains s, each s; is a root of
f(X). Thus, f(X) = g(X). 0O

The above two propositions say, in the language of the next chapter, that
k§ie/k is a radical extension and that k. /k$ . is a separable extension.

1.5 Finite ficlds o

We now give a brief account of finite fields and their algebraic extensions,
in terms of the preceding two sections. Throughout the section, p denotes a
prime number and m, n denote positive integers.

Suppose that & is a field of dimension m over a prime field 7 of p elements.
Then the number of elements of k is p™. Thus, the multiplicative group
k* = k — {0} of units of k has order p™ — 1 and s*"~! = 1 for all s € k*.
Thus, s?" = s for all s€ k. Since X*" — X has at most p™ roots in k ,, it
follows that k = Roots,, . (X" — X). Consequently, k is a splitting field for
X?" — X over .

Suppose conversely that & is a splitting field for X*" — X over the field
Z,, of p elements. Since s > s*" is a homomorphism on k, Roots, (X" — X)
is a subfield of k. Thus, k& = Roots, (X" — X). Now X?" — X has no
multiple roots, since X*" — X and its derivative p"X?"~! — X = — X are
relatively prime (see- E.1.8). Thus, X?" — X = [[f" (X — s;) where the
$1, - - ., Spm are distinct elements of the splitting field k. Thus, & = {sy, .. ., syn}
and k has p™ elements. From the preceding paragraph, it follows that
k:Z, = m.

We have now established the following characterization of finite fields.
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1.5.1 Proposition. If k is a field extension of dimension m of a prime
field 7 of p elements, then k has p™ elements, k is the splitting field of X*" — X
over = and k = Rootsy,  (X*" — X). Conversely, if p is a prime and m a
positive integer, the splitting field of X?" — X over Z, is a field extension of
dimension m of Z,,.

1.5.2 Corollary. The number of elements of a finite field of charac-
teristic p is p™ for some m. For every m, there exists a field of characteristic p
having p™ elements, and any two fields of p™ elements are isomorphic.

Proof. 1If k is a finite field of characteristic p, then k has p™ elements
where m = k:=(k). Thus, a field has p™ elements if and only if it is the split-
ting field of X*™ — X over a prime field = of p elements. In particular, any
two fields of p™ elements are isomorphic, by the theorem on isomorphisms of
splitting fields. [

1.5.3 Corollary. Let k be a finite field and let s € k). Then the roots in
k z1¢ of the minimum polynomial £,(X) of s over k are distinct.

Proof. Let the number of elements of k(s) be p™. Then s is a root of
X?" — X, so that £,(X) divides X*" — X. But X*" — X has distinct roots in
ke, @s was noted in the proof of 1.5.1. Thus, f;(X) has distinct roots in
kA1g~ D

Next, let k be a finite field of ¢ = p™ elements. If K is a field extension of
k of dimension n, then K has ¢" elements and K = Rootsg,,, (X" — X), by
1.5.1, so that K is the splitting field of X" — X over k. Conversely, any
splitting field of X" — X over k is a field extension of k of dimension n, by
1.5.1. We now have the following generalization of 1.5.1, in view of the
theorem of isomorphism of splitting fields over k.

1.5.4 Proposition. Let k be a field of g = p™ elements. Then there
exists a field extension K of k of dimension n, namely any splitting field of
X — X over k. Moreover, any two extension fields of k£ of dimension n are
k-isomorphic.

Since any algebraic extension of k is a union of finite dimensional exten-
sions of k, the above proposition yields a description of all algebraic exten-
sions of a finite field k. In particular, every nonzero element s € ky is a root
of unity, that is, satisfies an equation s* = 1 for some positive integer d, since
this is true of the non-zero elements of any finite dimensional extension
K of k.

We conclude this section with a brief account of the group Aut, K of k-
automorphisms of a finite dimensional extension field K of a finite field k.
For this, let the number of elements of k be ¢ = p™ and let the number of
elements of K be g". The pth power homomorphism o: K — K, defined by
a(s) = s? for s € K, is injective (as a homomorphism), hence surjective since
K is finite. Thus, ¢ € Aut K. By 1.5.1, k is the set of fixed points of = ¢™ and
the order of 7 is n. We claim that Aut, K is the cyclic group generated by .
For this, we need the corollary to the following proposition.
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1.5.5 Proposition. Let A be a finite subgroup of the group L* of units
of a field L. Then 4 is cyclic.

Proof. Letmbe the exponent of 4 (see 0.2.4). Then A < Roots, (X™ — 1)
so that 4 has at most m elements. But A has a cyclic subgroup of order m, by
0.2.4. Thus, A is cyclic of order m. [

1.5.6 Corollary. K* is cyclic and K/k is a simple extension.

Proof. Since K* is finite, it is cyclic by 1.5.5. Let K* be generated by s,
we have K = k(s). []

1.5.7 Proposition. Aut, K is the cyclic group generated by = and
k = KAuK

Proof. Let K = k(s). Then the minimum polynomial fi(X) of s over k
has the form f(X) = [ 17 (X — s;). Now each o € Aut,, K maps s into o(s) = s;
for some i and o is completely determined by o(s). Thus, Aut, K has at most n
elements. But 1, =, ..., 7"~ are n distinct elements of Aut, K. Thus, Aut, K
is the cyclic group generated by 7. In particular,

KA = {se K| 7(s) = s} = Rootsg (X — X) = k. O

1.6 Transcendency basis of a field extension

Let K be an extension field of k. A subset S of K is algebraically inde-
pendent over k if no element s of S is algebraic over K (S — {s}) (see 1.6.3).
An extension field k' of k is purely transcendental if k' = k(S) for some
algebraically independent subset S of &’. In this section, we .show that any
field extension K/k can be broken up into an algebraic extension K/k’ and a
purely transcendental extension k’/k by suitably choosing a subfield &’ of K
containing k (see 1.6.13). We also give a simple description of all purely
transcendental extensions of k (see 1.6.6).

1.6.1 Definition. An element x of K is algebraically dependent on a
subset S of K over k (written x < ) if x is algebraic over k(S). If x is not
algebraically dependent on S over k, we write x &< S. A subset S of X is
algebraically dependent on a subset T of K over k (written S < T) if s < T
for all s € S.

1.6.2 Theorem. Let xe K, S < Kand T < K. Then:

l.s< SforallsesS;

2. if x< Sand S< T, then x < T;

3. if x < S, then x < S° for some finite subset S° of S;
4. if x < Sand x K S — {5}, then s < (S — {s}) U {x}.

Proof. (1) is clear since s € k(S) for all s € S. For (2), simply note that if
x is algebraic over k(S) and s is algebraic over k(T) for all s € S, then x is
algebraic over k(T") by 1.2.7. For (3), let x be algebraic over k(S) and let
Sf(X) = 3F,a; X! be a monic polynomial in X with coefficients in k(S) such
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that f(x) = 0. Since k(S) = Usoes k(S°) where S is the set of finite subsets of
S (see 1.1.9), wecan find S° e S such that ay, .. ., g, € k(S°). Then x < S°.
For (4), suppose that x is algebraic over k(S) but x is not algebraic over k'
where k' = k(S — {s}). Then there exists a nonzero polynomial f(X, s) =
ST o as)X?in X with coefficients a;(s) in k'(s) = k(S) such that f(x, s) = 0,
and we may take the a,(s) to be polynomials in s over k’ (by clearing denomi-
nators). Then f(X, s) = X% b,(X)s’ for suitable polynomials b,(X) in X with
coefficients in k' where b,(X) # 0. Since x is not algebraic over k', we have
b,(x) # 0. But 0 = f(x, s) = >g b,(x)s’. Thus, s is algebraic over k'(x) and
s<(S=-{Huvixy O

1.6.3 Definition. A subset S of K is algebraically independent over k if
sKS —{s}forallseS.

1.6.4 Definition. K|k is purely transcendental if K = k(S) for some al-
gebraically independent subset S of K over k.

1.6.5 Theorem. A subset S of K is algebraically independent over & if
and only if for any distinct elements s,, . . ., s, of S, the monomials s,° - - - §,°
(es, . . ., e, nonnegative integers) are distinct and linearly independent over k.

Proof. Suppose that S is not algebraically independent over k£ and choose
s € Ssuch that s < S — {s}. Then there exist s, ..., S, in S — {s} such that s
is algebraic over k(sy, ..., s,) (see 1.6.2). But then one sees easily that the
monomials §,° . ..s,°s¢ are not distinct and linearly independent over k.
Suppose conversely that S has distinct elements s;,...,s, such that
D Gy, 51° - - - $,% = 0 is a nontrivial linear combination of the monomials
8§11 - - - 8,%. Then it follows that s; is algebraic over k(s1, . . - Si—1, Si+ 1, - - +» Sn)
and s; < S — {s;} for some i. []

1.6.6 Corollary. For any set S and field k, there is a purely transcen-
dental extension K of k containing S such that S is algebraically independent
over k and K = k(S). The monomials s,° :--s,% (s4, ..., 8, being distinct
elements of S and e, . . ., e, being nonegative integers) are distinct and form
a k-basis for k[S], and k(S) is isomorphic to the field of quotients of k[S] (see
0.1 and E.0.10). If K; = k(S;) and K, = k(S,) are purely transcendental
extensions of k and if S; and S, have the same number of elements (car-
dinality) and are algebraically independent over k, then there is a k-isomor-
phism f from K; = k(S;) to K, = k(S.) which maps S, bijectively to S, and
k[S;] isomorphically to k[S;].

Proof. Let S be the free Abelian monoid on S (see E.0.55), so that §
consists of the monomials s, - - - 5,% (s, . . ., §, being distinct elements of S
and e, ..., e, being nonnegative integers), two such monomials §,°t - - - §,°
and s,/1---s,/» are equal if and only if ¢, = f; for 1 <i < n and s, ---
Spensy 1 - 5,00 = ;%11 .. g %+ 0 for any two such monomials. Let k[.S] be
a vector space over k with basis S, so that an element f of k[S] is a linear
combination f = 3 4,,..,5:° - - - s,°» (all but finitely many coefficients being
0) and the coefficients 4, ..., of f are uniquely determined by f. The multipli-
cation in § can be extended uniquely to a commutative multiplication in
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k[S] such that f(ag + bh) = afg + bfh for a,bek and f, ge S. Together
with this multiplication and vector space addition, k[S] is an integral domain
(see 0.1) (k[S] is also the monoid k-algebra of the monoid § in the sense of
E.0.58). Letting K be the field of quotients of k[S] (see 0.1 and E.0.10) and
identifying each f e k[S] with f/1 € K and each a € k with aly € K where 1
is the identity of K, so that S < K and K is a field extension of k, one shows
easily that K = k(S) and S is algebraically independent over k. The remain-
ing assertions about the s,° - - - 5,° and about k(S) and k[S] are clear from
the construction. Now suppose that K; = k(S;) and K, = k(S,) are purely
transcendental extensions of k and that S; and S, are algebraically indepen-
dent subsets of K; and K, respectively over k having the same number of
elements (cardinality). Let f be a bijective function from S; to S,. By 1.6.5, we
can define f(s,° - - - 5,%0) = f(s1)%+ - - f(s,)% for 54, ..., 5, in S. And by 1.6.5,
we can further extend f to a bijective k-linear mapping from k[S,] (k-span of
the §,° -+ - 5,% with sy, ..., 5, €8S;) to k[S;] (k-span of the #,°1 - - - ¢,% with
t15..., t, € Sy). Since K; = k(S,) (a field of quotients of k[S;]) and K, =
k(S;) (a field of quotients of k[S,]), f can further be extended to a k-
isomorphism from K; to K; (see 0.1 and E.0.10). [I

1.6.7 Definition. 1If K = k(S) and R = k[S] where S is algebraically
independent over k, we say that K is a field of rational expressions and R a ring
of polynomials in the algebraically independent elements s of S.

1.6.8 Proposition. Let S = T < K and suppose that T is algebraically
independent over k and T < S. Then S = T.

Proof. Let teT. Since S< T and 1t KT — {t}, we have t K § — {¢}.
Since t < S, it follows that t€ S. Thus, T< Sand S=T7. [ )

1.6.9 Proposition. Let x € Kand S < K. Suppose that S is algebraically
independent over k and x K S. Then S U {x} is algebraically independent.

Proof. Suppose that ye SU {x} and y < (S V {x}) — {}. Since x K S,
we have y # x. Thus, ye Sand y < (S — {y}) U {x}. Since x K § — {3}, it
follows from 1.6.2 that x < S, a contradiction. []

1.6.10 Proposition. Let S, (a < A) be a collection of subsets of K such
that S, < S, or S, < S, for every pair of elements a, b € A. Suppose that S,
is algebraically independent over k for all ae€ A. Then S = Jgea S, is
algebraically independent over k.

Proof. Suppose that s € S and s < S — {s}. Then s < S° for some finite
subset S° of S — {s}. We can choose a € 4 such that S° < §, and s € S,, by
the inclusion condition on the S,, S, with a, b € 4. Then s < S, — {s} and S,
is not algebraically independent over k, a contradiction. Thus, s K S — {s}
for s € S and S is algebraically independent over k. [

1.6.11 Theorem. For S < K, S has a subset S° such that S° is alge-
braically independent over k£ and S < S°. !
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Proof. By 1.6.10 and a straightforward application of Zorn’s Lemma
(see S.4), S has a maximal subset S° algebraically independent over k. Sup-
pose that s € S and s &K S°. Then S° U {s} is algebraically independent over k
by 1.6.9, contradicting the maximality of S°. Thus, $ < S° [

1.6.12 Definition. A transcendency basis for K/k is a subset S of K
algebraically independent over k such that K/k(S) is algebraic.

1.6.13 Theorem. K/k has a transcendency basis S. If S and T are
transcendency bases for K/k, then S and 7 have the same number of elements
(cardinality).

Proof. By 1.6.11, K has a subset S algebraically independent over k such
that K < S. Then K/k(S) is algebraic and S is a transcendency basis for K/k.
Next, let S and T be transcendency bases for K/k. To show that S and T have
the same number of elements (cardinality), we follow the proof of the in-
variance of dimension of a vector space. Suppose first that S and T are
infinite. Then for each s € S, there exists a finite subset T; of T such that
s < T,.Since K < Sand S < Uses Ty, we have K < Uses Tsand T < Uses T,
50 that T = J,.s T; by 1.6.8. Similarly, S = Uer S; where the S, are finite
subsets of S. Since S and T are infinite, it follows that S and T have the same
cardinality. Suppose next that, say, S is finite. We prove by induction on the
number i of elements of S — T that S and T have the same number of ele-
ments. If S < T, then § = T since T < S (see 1.6.8). Thus, the assertion is
true if i = 0. Next, let i > 0 so that S ¢ 7. Take s€ S — T. Then ¢ K
S — {s} for some €T (otherwise T < S — {s} and S< § — {s} since
S < T, contradicting 1.6.8). For sucha ¢, S’ = (S — {s}) U {¢} is independent
(see 1.6.9) and s < S’ (see 1.6.2). Thus, S < S"and S’ isa transcendency basis
for K/k. Since the number of elements of S’ — T'isi — 1, S’ and T have the
same number of elements by induction. Thus, S and T have the same number
of elements. [J

1.6.14 Definition. The transcendency degree of K/k is the number of
elements of a transcendency basis for K/k.

E.1 Exercises to Chapter 1

E.1.1. Let K and L be field extensions of a field k¥ and let f: K-> L be an
isomorphism of fields. Show that f'is linear over k if and only if f(a) = a for
all aek.

E.1.2 (Frobenius Homomorphism). Let X be a field of exponent charac-
teristic p. Show that the mapping 7: K — K defined by m(x) = x? is a homo-
morphism. (Consider the binomial expansion of (x + y)* and show that p
divides the binomial coefficients of the unwanted terms).

E.1.3. Let ¢ be a homomorphism from a field k to a field k’. Define
¢ k[X]—Kk'[X] by pCta, XY = s e(a) X! for 3% a, X' € k[X]. Show that
¢: k[X]— k'[X] is a homomorphism.

E.1.4 (Euclidean Algorithm). Let f(X), g(X) be elements of k[X], k being
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a field, and let Degf(X) > 1. Show that g(X) = m(X)f(X) + r(X) for
suitable m(X), r(X) € k[X] such that Deg r(X) < Deg f(X).
E.1.5 (Roots). Let g(X) be a polynomial with coefficients in a field £ and
let K be an extension field of k. Then an element a € K is a root of f(X) if
g(@) = 0. Show that if a is a root of g(X) in K, then g(X) = m(X)(X — a) for
some m(X) € k[X]. (Use the Euclidean Algorithm for k[ X1)).
E.1.6 (Partial Fraction Decomposition). Let k be a field and let f(X), g(X)
be nonzero elements of k[X] such that Deg f(X) < Deg g(X). Show that
(a) if g(X) = a(X)b(X) where a(X), b(X) are relatively prime elements of
k[X], then f(X)/g(X) = m(X)/a(X) + n(X)/b(X) where Deg m(X) <
Deg a(X) and Deg n(X) < Deg b(X) (consider the equation f(X) =
n(X)a(X) + m(X)b(X));
(b) if g(X) = ¢ I'T} g(X)* where the g;(X) are distinct monic irreducible
elements of k(X) and ¢ € k, then

£ _ 3 A0
gX) G g(X)
for suitable f(X) such that Degfi(X) < Deggi(X)t for 1 <i<n
(use part (a) inductively).
E.1.7 (Differentiation). Let k be a field and let f(X) = X3 a; X' be an ele-
ment of k[ X]. Define f(X)' = >3 ia, X'~ (the formal derivative of f(X) with
respect to X). Show that (¢f(X)) = ¢f(X), (f(X) + g(X)) =f(X) +
g(X)" and (f(X)g(X)) = f(X)'g(X) + f(X)g(X)' for all f(X), g(X) € k[X]
and cek.
E.1.8 (Multiple Roots). Show that if an element f(X) in the polynomial ring
k[X] over the field k is relatively prime to f(X)’, then f(X) has no multiple
roots in a splitting field for £(X) over k.
E.1.9 (Automorphisms of R). Let o be an automorphism of the field R of
real numbers. Show that o = idy by showing that
(@) o(a) =aforacQ;
(b) a is positive if and only if o(a) is positive for a € R;
(©) a < bif and only if o(a) < a(b) for a, b € R;
(d) if a4, a,, . . . is a sequence in Q converging to a, then o(a) = a.

E.1.10 (Quadratic Extensions). A quadratic extension is a field extension of
degree 2. Show that if K/k is a quadratic extension of characteristic not 2, then
(a) Kk has a basis 1, y such that y* e k;
(b) Aut, K consists of idx and o where o is the conjugation o{a + by) =
a— by(a, bek).
Show that if K/k is a quadratic extension of characteristic 2, then Aut, K has
order 1 or 2 and
(c) if Aut, K has order 1, K has a basis 1, y such that y2 e k;
(d) if Aut, K has order 2, then K has a basis 1, y such that y2 — yek.

E.1.11. Show that the splitting field of an irreducible polynomial f(X) in
k[X7] of degree 2 is a quadratic extension.



Exercises to chapter 1 43

E.1.12. Construct a splitting field over Q for
(@ X2 —5;
(b) X2 — p, p being any prime;
() X* —8X?2 + 15;
d X*+ X+ 1.

E.1.13. Let p be a prime number and let a # 1 be a pth root of unity in C,
that is, a root in C of X? — 1. Show that

(a) the minimum polynomial of a over @ is X?~ ! 4+ X772 4+ ... 4
X+ 1;
(b) Q(a) is a splitting field for X? — 1 over Q.

E.1.14. Let K/k be a field extension and let K = k(a). Suppose that K
contains » distinct roots of the minimum polynomial f(X) of a over k, where
n is the degree of K/k. Show that

(a) G = Aut,, K acts transitively on the set Rootsy f(X) of roots of f(X)
in K;
(b) K¢ = k where K¢ = {x € K| o(x) = x for 0 € G}.
E.1.15. Let K/k be a field extension of characteristic p > 0 and let K = k(a)
where a” € k. Show that

(a) Aut, K = 1 (has only one element);
(b) the minimum polynomial of ais X? — a” ifa¢ kand X — aifack.

E.1.16. Let k be a field of characteristic p > 0 and let b e k. Show that
either X? — b is irreducible in k[X] or b = ¢® and X? — b = (X — a)* for
some a € k. .

E.1.17. Prove that the algebraic closure of a countable field is countable.

E.1.18. Describe a field extension K/k which is not purely transcendental
but is transcendental in the sense that each element x € K — k is transcen-
dental.

E.1.19 (Transcendency Degree). Let L/K and K/k be field extensions with
transcendency bases T and S respectively. Show that

(a) S U T is a transcendency basis for L/k;
(b) the transcendency degree of L/k is the sum of the transcendency
degrees of L/K and K/k.

E.1.20 (Abstract Dependence Relations). Let K be any set. Suppose that
for any element x of K and any subset S of K, it is specified whether x < S'is
true or false, and suppose that the following conditions hold for x € K,
ScKand T <= K:

1. s< SforallseS;

2. if x < Sand S < T, then x < T (where S < T means that s < T for
all s €.5);

3. if x < S, then x < S° for some finite subset S° of S;

4. ifx < Sand x K S — {5}, then s < (S — {s}) U {x}.
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Then < is called a dependence relation between the elements of K and the
subsets of K. A subset S of K is independent if s K S — {s} for all se S. A
basis for K is an independent subset S of K such that K < S. Following the
format of 1.6, prove that K has a basis and that any two bases of K have the
same cardinality. Use this to prove the Basis Theorem for finite and infinite
dimensional vector spaces.

E.1.21 (Liiroth Polynomial). Let K/k be a field extension, x a transcen-
dental element of K over k. Let k(x)[X] be the polynomial ring in an inde-
terminant X over the field k(x). Let y € k(x) — k and y = u(x)/v(x) where
u(x), v(x) are relatively prime elements of k[x]. Let P(X) = yv(X) — u(X).
Show that

(@) P(X) # 0 and P(x) = 0, so that x is algebraic over k(y);

(b) y is transcendental over k;

© if yo(X) — u(X) = Q(X)R(X) where Q(X)ek[X] and R(X)e
k[yl[X], then Q(X) € k (otherwise, try replacing X by a root of Q(X)
in the algebraic closure of k);

(@) P'(X) = u(x)p(X) — v(x)u(X) is primitive in k[x][X] (consider the
equation u(x) — v(x)z = d(x)(R(X)[v(X)) where z = u(X)/v(X) and
compare with (c)).

E.1.22 (Resultant). Letk be afield and let f(X) = 38 a, X%, g(X) = S8 b, X?
where either a,, # 0 or b, # 0. Show that f(X) and g(X) have a common
factor of positive degree if and only if there exist n(X), m(X) € k[ X] (not both
0) such that n(X)f(X) = m(X)g(X), Deg m(X) < n and Deg m(X) < m.
Letting n(X) = 33 *n,X’ and m(X) = 38 ' mX*' where the n; m; are
elements of k (not all zero), describe the n + m linear equations in the n,, m;
which are satisfied if and only if n(X)f(X) = m(X)g(X). Conclude that
f(X) and g(X) have a common factor of pos1t1ve degree if and only if the
resultant determinant

an  Qp-3 te ao
am Ap -1 ot 4o
Ay QAp-1 e Qo
R(f, &) =
bn bn—l bl bO
bn bn—l bl bO

i bn bn -1 bO
of £(X) and'f(%'\"é;iishes.
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E.1.23. Interpret the vanishing of the determinant

1 0 -1 0 0
0 1 0 -1 0
0 0 1 0 -1
1 3 3 1 0
0 1 3 3 1

in the context of the preceding problem.

E.1.24 (Symmetric Polynomials). Let k be a field and let R = k[Xj, .,, Xyl
be the polynomial ring in n variables over k. Let G be the symmetric group on
the set {Xy, . . ., X,} and define o(f(X)) for o € G and f(X) = 3 a;;..;, Xa'r - -
Xoh by o(f(X)) = 3, a‘l-ui,.a(Xl)‘l s o( X))

Show that

(@) o: R— R as defined above is an automorphism of R;

(b) G acts as a transformation group on R;

(¢) The set RS = {f(X) | o(f(X)) = f(X) for all o € G} is a subring of R
and subspace of R over k;

(d) RS contains the elementary symmetric polynomials

fi=X1+"'+Xn
fo=XiXo+ X X+ o+ XX + - + X X,

Jo= X1 Xp- - Xy

(e) every symmetric polynomial f(X) (element f(X) of R®) can be ex-
pressed as a polynomial in the elementary symmetric.polynomials
fis. . s [ that is, RC is generated by the n elements f, . . ., fa.

To prove (¢), order the given f(X) € R® lexographically, placing a monomial
term aX;" - - - X, occurring in f(X) before another bX,% - - - X,’» if the first
nonvanishing difference i,, — jn is positive. Each occurring monomial term
aX,h--- X, is accompanied by all expressions obtained from this one by
permuting the exponents i,. Write only the lexographically first such term, so
that i, > iy > - -+ > i,. Letting aX;% --- X, be the first term occurring in
F(X), show that g = afi"~"2fa~% - - - f,}» has the same first occurring term
aX, - - - X,'n. Examine the difference polynomial f(X) — g and conclude that
one can prove by induction that f(X) can be expressed as a polynomial in the
fis - - -» Jn- Show, finally, that

(f) the expression of a nonzero f(X) € R® as polynomial in f3, . . ., f, over
k is unique (that is, the coefficients of the monomials in f;, . . ., Jfn are
uniquely determined).

E.1.25. Express the following symmetric polynomials in terms of elementary
symmetric polynomials in k[X, Y, Z].

@ X2+ Y%+ 272

(b) X2YZ + XY?Z + XYZ? + XYZ
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E.1.26 (Generic Discriminant). Let k[Xj,..., X,, X] be the polynomial
ring over k in n + 1 variables and let f = []% (X — X;). Show that f =

X" — X" + foX"72 — - 4+ (=), where the f3,..., [, are the sym-
metric polynomials in X3, ..., X,. The symmetric polynomial
D = H (X; — X)?
i<i

can be expressed as a polynomial D = D(g,,..., g,_1) in the coefficients
g=(D",of f=X"+ g, 1 X" 1 + g, 2 X""2 4+ ... + g, called the
generic discriminant or the discriminant of f. Show that

(a) the discriminant of f = X2 + bX + cis D = b® — 4c;
(b) the discriminant of f' = X® + aX? 4+ bX + cis D = a?h® — 4b® —
4a3c — 27¢® + 18abc.

(Here, itisunderstood thatf = (X — X; (X — Xy)in(a)andf = (X — X;) x
(X — Xo)(X — Xy) in (b))

E.1.27 (Discriminant). Letf(X) = ao + a;X + -+ + a,X"(a, # 0) where
the a, afe in a field k. The discriminant of f(X) is

_gmnap(f, @ G
DU (X)) = a, D(a,, - an)

where D(go, . . ., &»-1) is as defined in the preceding exercise. Show that

(a) D(f(X)) is a polynomial in ay, . . ., a,;
(b) if f/(X) = a, TI8 (X — x;) with x4, ..., x, in an extension field K of k,
then D(f(X)) = a,>* "2 [ 1;<i (x; — x1)%;
() D(f(X)) = 0 if and only if f£(X) has multiple roots in a splitting field.
Describe the discriminant of aX2? + bX + cfora, b,cek anda # 0.

E.1.28 (Generic Resultant). Let f(X) =an[I"(X — X)) and g(X) =
b, [T (X — Y)) in the polynomial ring k[Xy,..., Xp, Y1,..., ¥y, X] in
m + n + 1 variables. Then the generic resultant of fand g is

S(j; g) = ammbnn ]_‘—3[ (*Xi - Yf)

Show that R(f, g) = S(f, g) by showing that

(@) R(f, g) is a,™b," times a symmetric polynomial in the X;, ¥; with
coefficients in the prime field;

(b) S(f, g) divides R(f, g) (show that X; — Y; divides R(f; g) for all 7, j);

© S(f.8) = an" [T g(X) = (= 1)™b," 1, /(Y,) and S(/, g) is therefore
a,™b," times a symmetric polynomial in the X;, ¥; with coefficients in
the prime field;

@ R(f, ) = S(f, &) (compare degrees of homogeneity and constants).

E.1.29 (Resultant and Discriminant). Let f(X) = >3 a, X! (a, # 0) be a
polynomial with coefficients in a field k. Show that

R(Af) = £a.D(f,f")
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where f = f(X), f' = f(X)'. (Show that

RUSY = ar [ 116G = a2 [ [ G = %) = @] | G — )"
where x,, . . ., x, are the roots of f(X) in some extension field K). Use this to

show again that f has multiple roots in a splitting field if and only if fand f’
have a common factor of positive degree.

E.1.30 (Interpolation). Let x,, ..., x, be distinct elements of a field k and
let yo, ..., v, € k. Show that there is precisely one element f(X) € k[X] of
degree at most n such that f(x;) = y; for 0 < i < n, namely

< S(x)
X)= ) —=2" X —x
s Z [Tisi G — x)) E( )
E.1.31. Regard Q as the prime subfield of the field C of complex numbers.
What is K:Q where K is the subfield of C generated by V2 and i = v —1?

E.1.32. Describe a splitting field K for X* + 1 over Q.
E.1.33. Construct a splitting field K for X® + X2 + 1 over Z,.
E.1.34. Construct a splitting field over Z; for X* + X° + X2 + X + 1.

E.1.35. Let K/k be a finite dimensional field extension and let k£’ be a sub-
field of K containing k. Show that k’: k divides K:k.

E.1.36. . Let K/k be a field extension and let a € K. Suppose that k(a): k is odd.
Show that k(a) = k(a?).

E.1.37 (Kaplanski). Let k be a field, a € k, m and n relatively prime positive
integers. Show that
(a) xisaroot of X™ — gonly if x™is aroot of X" — a;
(b) if X™ — a and X" — a are irreducible, then the degrees of k(x"),
k(x™) and k(x) over k are m, n and mn respectively;
(¢) X™ — a is irreducible if and only if X™ — a and X" — a are
irreducible.

E.1.38. Let k be an infinite field and let K = k(X) be the field of rational
expression in an indeterminant X over k. Let G = Aut, K. Show that
(a) K¢ = k where K¢ is the fixed field K¢ = {ae K| o(a) = a for
o€ G},
(b) the only finite dimensional subextension k’/k of Kk is the extension
klk.
E.1.39. Show that for any prime number p, Z,[X] has irreducible elements
of degree p” for every positive integer n.

E.1.40. Let K be the algebraic closure of a finite field Z, (p prime) and let
GL,K be the group of nonsingular n x n matrices with coefficients in K.
Prove that

(a) every element of GL,K has finite order;

(t)) for n > 2, GL,K has an infinite p-subgroup;
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(c) foreachge GL,,K,\the cyclic subgroup {g> contains elements t, u such
that g = tu and such that ¢ and u are conjugate to elements of GL,K
of the form

and e

respectively.

E.1.41. Show that if k is an infinite field and f(X) a nonzero element of
k[X], then f(¢) # O for some ¢ € k. Describe for any finite field k¥ a nonzero
polynomial f(X) such that f(¢) = 0 for all t e k.

E.1.42. Let K/k be a field extension and let ¢ € Aut, K. Show that for any
subfield k£’ of K containing &, o(Aut,. K)o=! = Aut,- K.

E.1.43. Prove that the discriminant of X® + ¢X + dis 4%c® + 5°d%.
E.1.44. Determine all irreducible polynomials of degree at most 3 over Zj.
E.1.45. Let K/k be a field extension of prime degree q. Show that K and k
are the only subfields of K containing k.

E.1.46. Let f(X) be an element of the polynomial ring k[ X] over the field .
Let X be a splitting field for f(X) over k. Then K:k < (Deg f(X))!
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2 The Structure of algebraic extensions

In this chapter, we give an account of the structure of algebraic extensions.
The first three sections are concerned with describing the structure of an
algebraic extension K/k in terms of the structure of the irreducible poly-
nomials in k[X] having roots in K. In the remaining section, properties of
subfields 4, B of K containing k are compared with properties of their
composite 4B.

Throughout the chapter, k is a field, K an algebraic extension of k, kg
an algebraic closure of k containing K. (Note here that any two algebraic
closures of k containing K are isomorphic, by 1.4.2, 1.4.8.) We let p denote the
exponent characteristic of k (see 1.1.4), in order that s** = s for s € k when k
has characteristic 0.

2.1 The structure of an irreducible polynomial

Let f(X) be an irreducible polynomial in A[X] and let f(X) =
¢ [Tt (X — s;) where the s; are the roots of f(X) in k.

2.1.1 Definition. We say that f(X) is separable over k if the s; are
pairwise distinct, radical (or purely inseparable) over k if the s; are all equal.

Note that (X)) is separable and radical over k if and only if (X)) is linear,
that is, has the form f(X) = ¢(X — 9).

2.1.2 Proposition. f(X) is separable over k if and only if f'(X) # O (see
E.1.7).

Proof. f(X) has a multiple root if and only if f(X) and f'(X) have a
common root (see E.1.8), that is, if and only if f(X) and f'(X) are not rela-
tively prime. Since f(X) is irreducible, this happens if and only if f'(X) = 0. [

2.1.3 Corollary. Let f(X) = g(X*°) with g(Y) € k[Y] and e maximal.
Then g(Y) is irreducible and separable over k.

Proof. The irreducibility is clear. The separability follows from the
proposition, for if g'(Y) = 0, then g(Y) = 3% ¢; Y* where ¢; = 0 or p divides
i for all i. But then ¢ would not be maximal. [

2.1.4 Definition. The above e is called the radical exponent of f(X).

2.1.5 Proposition. Let the radical exponent of f(X) be e. Then
f(X) = ¢TI (X — s,)*°, where the s4,..., s, are the distinct roots of f(X)
in Ky

49
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Proof. Let f(X) = g(X*) asin 2.1.3. Let g(Y) = ¢ [ [P (Y — ¢;) where
the ¢; are distinct elements of k,,,. Letting s; be a solution in k. to s = ¢,
(1 £ j < m), we then have

FX) = g(X7) = ¢ ITI X7 — s = ¢ H X — 5)”

(see E.1.2). []

2.1.6 Corollary. Let e be the radical exponent of f(X). Then f(X) is
separable over k if and only if e = 0, and f(X) is radical over k if and only if
S(X) = (X — 5) for some s € kpy.

2.2 Separable and radical extensions

The structure of algebraic extensions K of k is closely related to the struc-
ture of irreducible polynomials in k[X], since we can pass from elements
§ € K to their minimum polynomials f,(X) over k. We exploit this relationship
here and begin by introducing terminology similar to the terminology
introduced in 2.1.

2.2.1 Definition. An element s e K is separable (respectively radical)
over k if its minimum polynomials fy(X) over k is separable (respectively
radical) over k.

Note that s is separable and radical over k if and only if s € k.
The next proposition is a restatement of part of 1.4.12.

2.2.2 Proposition. An element s € k is radical over k if and only if
s € ke, Wwhere G = Auty, k.

2.2.3 Proposition. If an element s € K is separable (respectively radical)
over k, then s is separable (respectively radical) over &k’ for any subfield k&’ of
K containing k.

Proof. This is clear since the minimum polynomial of s over k' divides
the minimum polynomial of s over k. [J

2.2.4 Proposition. Let s € K and let e be the radical exponent of f,(X).
Then s7° is separable over k and s is radical over k(s*°).

Proof. f(X) = g(X*°) where g(Y) is an irreducible and separable poly-
nomial in k[ Y]. Since g(Y) is the minimum polynomial for s7°, s*° is separable
over k. And s is radical over k(s?°) since s** € k(s*°) (see 2.1.6). I

2.2.5 Proposition. Let s € K. Then s is separable over k if and only if
k(s) = k(s®), and s is radical over k if and only if s*° € k for some e.

Proof. Suppose first that s is separable over k. Then s {s separable and
radical over k(s?), so that s € k(s?) and k(s) = k(s?). Suppose next that s is
not separable over k. Then fi(X) has radical exponent e > 1 and f(X) =
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g(X*) where g(Y) is the minimum polynomial of s? over k. Thus, k(s):k =
Deg f(X) # Deg g(Y) = k(s): k and k(s) # k(s?). The remaining assertion
is clear from 2.1.6. []

We now turn to the study of separable and radical extensions K of k. We
let k¢ be an algebraic closure of k containing K.

2.2.6 Definition. The extension K/k is separable (respectively radical) if
each s € K is separable (respectively radical) over k.

Note that the extension K/k is separable and radical if and only if K = k.
The following two propositions are restatements of 2.2.2 and 2.2.3.

2.2.7 Proposition. The extension K/k is radical if and only if K is a
subfield of k§,., where G = Aut, kmg.

2.2.8 Proposition. 1If the extension K/k is separable/radical, then K/k’ is
separable/radical for any subfield £’ of K containing k.

2.2.9 Theorem. Letse K. Then sis separable/radical over k if and only
if k(s)/k is separable/radical.

Proof.  One direction is clear. We now prove the other. Suppose first that
s is radical ovei k. Then s** e k for some e. Let ¢ € k(s) and express ¢ as
t = 32371 a;s for suitable g; € k. Then 17 = >2-1 g,*°s** € k and ¢ is radical
over k. Thus, k(s)/k is radical. Suppose next that s is separable over k and let
t€k(s). We show that ¢ is separable over k by showing that k(z) = k(z?)
(see 2.2.5). But k(s) = k(s”). Since 1,s,...,5s" ! is a basis foi k(s)/k and
1, s%,...,(s")" ! is a basis for k(s®)/k (n = k(s):k = k(s?):k), this implies
thatif ro, ..., r,_, span k(s) over k,sodo ro?, ..., r2_,. Since n = k(s):k, the
latter must also be linearly independent over k. Taking r; = tifor 0 < i <
m — 1 (m = k(t):k), it follows that the elements 1, %, . . ., (¢?)" ! of k(z) are
linearly independent over k, hence form a basis for k(¢)/k. Thus, k(¢) = k(z?)
and ¢ is separable over k. Thus, k(s)/k is separable. [J

2.2.10 Theorem. Letk be infinite, let K, K, be two extensions of k and
let oy,. .., o, be distinct elements of the set Hom, (K, K;) of k-homomor-
phisms from K; to K,. Then there exists s € K; such that ¢,(s), . . ., g,(s) are
distinct. If K, /k is algebraic, s can be taken to be separable over k.

Proof. Let s, ..., s, be elements of K such that o, and o, take on the
same values at s, . . ., s, if and only if i = j. Let A(X) = 3™, 5,X" and note
that oy(h(X)) = o4(h(X)) if and only if i = j. Thus, [1;4; (c:(A(X) — o;a(X)))
is a nonzero polynomial in K,[X]. Since k is infinite, there exists ¢ € k such
that [Ty, (0i(h(t)) — oi(h(1))) # 0. Letting s = A(t), o04(s),..., o,(s) are
distinct. If K /k is algebraic, s** is separable over k for some e and o,(s7), .

0,(s”) are distinct (see E.1.2). Thus, we may replace s by s** and s can be
taken to be separable over k. []
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2.2.11 Definition. We let k., = {s€ K|s is separable over k} and
keaa = {s€ K| s is radical over k}. The sets k., and k..q are called the
separable and radical closures of k in K respectively.

2.2.12 Definition. We let kg,, = {s € Kag | 5 is separable over k} and
kgaa = {5 € ka | s is radical over k}. These sets are called the separable
closure and radical closure of k respectively.

It is easily seen that k., and kg.q are field extensions of k (see E.1.2).
That k., is a subfield of K is a consequence of the following important
theorem.

2.2.13 Theorem. Let K:k < oo. Then kg, = k(s) for some s €k, the
extension Kk, is radical and the mapping ¢ > ol,,,, from Hom, (X, kae)
to Hom,, (kgep, Kaig) is @ bijection.

Proof. 1If k is finite, then K = k(s) for some s € K and K[k is separable,
by 1.5.6. Thus, k., = K = k(s) and there is nothing more to prove. Suppose
next that k is infinite. Since K:k < oo, Hom,, (K, k) has only finitely many
elements o, . . ., o, by 1.4.11, and we may take o; = id, the inclusion map-
ping from K into k,.. Now there exists s € kyqp, such that oy(s), . . ., o,(s) are
distinct, by 2.2.10. Now k(s) < Kgep, by 2.2.9, and we claim that k(s) = kgep.
For this, it suffices to show that K/k(s) is radical, for then if € ks, £ i8
separable and radical over k(s) so that ¢ € k(s). Let us now regard K as the
algebraic closure k(s)a Of k(s) (see 1.4.8). Letting o€ Autyg k($)ae =
Aty kg, We have o(s) = s = idg(s) = o4(s), so that o|x = o, = idg by the
distinctness of the o(s) for o; € Homy (K, kai). It follows that K < k()%
where G = Auty, k(s)a1e- Thus, K/k(s) is radical and k(s) = ksep.

We have shown in particular that K/k,,, is radical. It is worth noting that
this also is an immediate consequence of the fact that for 7 € K, t*° € kgqp for
some e (see 2.2.4).

It remains to show that ¢ — oy, is a bijection from Homy (K, kag) to
Hom,, (Kyep, kaig)- Suppose that o, 7 € Hom,, (K, kae) and Olhgep = Tlisepr L€L
t € K and choose e such that 1*° € k. Then o(t)** = o(t™) = 7(t*°) = =(¢)"".
Since the peth power mapping is injective (as a homomorphism of fields),
o(t) = 7(¢). Thus, o = = and o+> ol is injective on Homy (K, kai)-
We finally show that o> ol is surjective from Hom, (K, kpg) to
Homy, (Ksep, kag). Thus, let ¢ € Homy, (kgep, Kate). Since kyy is an algebraic
closure of kg, and of g(ksp), ¢ has an extension to an automorphism ¢ of
kag- Letting o = &|x, we have oy, = ¢. (It is perhaps worth noting here
that we could, instead, define o directly in terms of . For 7 € K, take e such
that #7° € ky,p, and let o(¢) be the p-th root of ¢(¢7°).) [

2.2.14 Corollary. Every finite dimensional separable extension is
simple.

2.2.15 Proposition. Let S be a subset Of kyop/Kraa. Then k(S)/k is
separable/radical. In particular, kg, and k.4 are subfields of K.
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Proof. Since k(S) = Ures K(T) where S is the set of finite subsets of S,
we may assume without loss of generality that S is finite. Then A(S)/k is finite
dimensional, so that A(S)s, = k(s) for some s €k, If S < kg, then
S < k(S)sep = k(s) so that k(S) = k(S)sep and k(S)/k is separable. If
S < Kkyaq, then obviously k(S)/k is radical. [J

2.2.16 Definition. We let (K:k)sop = ksep:k and (K:k)ga = K:kgeop.
The integer (K: kgep/(K: k)raq is called the separability degree|radical degree of
K over k.

Note that K:k = (K:k)gep(K:k)raq, by the transitivity of degree. We
prove later on that separability degree and radical degree are transitive (see
2.2.21).

2.2.17 Theorem. let K:k < oo. Then the number of elements of
Hom,, (K, kye) is (K:k)gep- If G is a subgroup of Aut, K, then G:1 = K: K¢,
Two subgroups G and H of Aut, K are equal if and only if their fixed fields
K¢ and K¥ are equal.

Proof. Since the expression o |, maps Hom, (K, ka) bijectively
into Hom,, (Kgep, Kare), by 2.2.13, it suffices to show that Hom,, (Kgqp, kaze) has
ksep:k elements. Take s € kg, such that kg, = k(s) and let f,(X) be the
minimum polynomial of s over k. Then f(X) = [I} (X — s,) where n =
keep:k and sy, ..., s, are distinct elements of k,,,. For each i, there exists a
unique k-isomorphism o;: k(s) — k(s;) such that o;(s) = s;, by 1.1.17. And
each o € Hom,, (k(s), k a1g) maps s to o(s) = s; for some i. Thus, Hom,, (k(s),
kaw) = {01, . .., 0.} and Homy, (kgep, kare) has kg, : k elements. )

Suppose next that G is a subgroup of Aut, K. Let s€ K and g(X) =
['1f (X — s;) where s, ..., s, is the orbit of s under G. Then g(s) = 0, and
g(X) e K9 X] since o(g(X)) = g(X) for all ¢ € G. (Compare with the proof
of 1.2.8). Thus, g(X) is the minimum polynomial of s over K¢, so that s is
separable over K¢ Thus, K/K€ is separable. It follows that s may be chosen
such that K = K%s). Now K:K® = Deg g(X) = n. Since s,,..., s, is the
orbit of s under G and K = K€(s), there exists for each i precisely one element
o € Gsuch that o(s) = 5; (1 < i < n). That is, G acts simply transitively on the
roots of the minimum polynomial over K¢ of the generator s of K over K¢. It
follows that G:1 = K: K€ If H is also a subgroup of Aut, K, and if K¢ = K*,
it follows that K¢ = K¥ = K'and G:1 = H:1 = I:1 = K: K¢ where I is the
subgroup of Aut, K generated by G U H. But then G = I = H, since
GeI>H. [

The above theorem establishes a Galois Correspondence G <> K¢ and is
called the Galois Correspondence Theorem for finite dimensional extensions.
A thorough discussion of this correspondence is given from another point of
view in 3.3.

2.2.18 Proposition. let K:k < o0. Then (K:k)..q = p° for some e and
XxP° € kgop for x € K.
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Proof. Since (K:k);aq = K:kgop, We may replace k by kg, That is, it
suffices to show that if K/k is a finite dimensional radical extension, then
K:k = pe for some e and x** € K for all x € k. Now for each x € K, x* € K for
some f (see 2.2.4). Thus, there exists a tower k = K, < K; < --- < K, of
distinct subfields K,, Kj, .. K and elements x,...,x. such that K; =
K,_i(x;) and x* € K, _, for 1 <e Butthen K;:K,_, =pforl <i<e
and K:k = [ ¢ (K;: Ki_y) = p°. For the minimal polynomial of x; over K;_,
is X7 — x? (see 2.1.6) and K;:K,_; =Deg(X? —x?) =p (1<i<e).
Note also that the mapping =(x) = x® maps K; into K;_,, so that m(K)< k
and x*° = #°(x) ek forxe K. [

We conclude this section in giving some simple structural properties of
K in terms of kg, and kpaq.

2.2.19 Proposition. K = kgepkraa if and only if Kjkpeq is separable
A basis for kg, over k is a basis for kgopkraq OVEr Kpaq-

Proof. Since K = Uses kraa(S) where S is the set of finite subsets of K,
it suffices to prove the proposition in the case where K:kpaq < 0. Thus, let us
assume that K:k g < 00. If K = Kgepkrag, then K = Kpaa(Ksep) and K/kpaq 18
separable by 2.2.15. Suppose conversely that K/k.q is separable and choose
x € K such that K = k,,q(x). Taking x** to be separable over k, by 2.2.18, we
have K = kpaa(®) = kraa(¥”) < Ksopkraa» by 2.2.5, and K = kgopkraa. It
remains to show that if x,, . . ., X, is a basis for kg, over k, then xy, . .., X, is
a basis for kgepkraq OVET Kyqq. Suppose not. Then there exist y; € kyaq, DOt all 0,
such that 37 x,y; = 0. Choose e > 0 such that y» € k for | < i < n. Then

2 xPp? = 0 and x,%, ..., x,” are linearly dependent over k. Thus, the
k-span k' of {z7° | z € kyep} is @ proper subfield of kgep. But kgep/k’ is radical
and separable (see 2.2.8) and k., = k', a contradiction. Thus, X1, ..., X, is
a basis for ksepkraa OVEr kpag. [

The above proposition says that the k-homomorphism from Ksep ® kraa
to K which maps x @ y to xy (x € kgep, ¥ € kraq) 1is injective and is a k-iso-
morphism if and only if K/k..q is separable. Here, we are regarding Kgep ®c
k.,.q as vector space over k and as ring such that (x ® »)(x’' ® ) = xx’ ® y)'
for x, X' € kgep, ¥, V' € kraa (€€ A.2).

2.2.20 " Corollary. kg = Ksepkraa and kae 1is k-isomorphic to
kSep ®k kRad'

Proof. kaglkgag is separable, by 2.2.2 and 1.4.13. []
We now prove the transitivity of separability degree and radical degree.

2.2.21 Theorem. Let K:k < oo and let k' be a subfield of K containing
k' Then (K: k)sep = (K k,)sep(k’:k)sep and (K k)rad = (K:k’)rad(k,:k)rad'

Proof. Since (K:k) = (K:k)sop(K:k)raa relates separability degree and
radical degree (see 2.2.16), and since degree is transitive, it suffices to prove
that separability degree is transitive. For this, consider the diagram
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’
sep

Kk Ksep

/X
X /

(ksep) '

a

k

where (k)" is the separable closure of k in k' and kg, is the separable
closure of k/ in K. Note that kg, = k'ky.,, since x € kl,, implies that
X** € kyqp (for suitable e), which in turn implies that x € k'(x*) © k'kgep.

k ,ksep = kéep
RN
K’ sep
N Y

(ksep)’

Then k'/(kqep)” is radical (see 2.2.13) and k,p/(ksep)’ is separable (see 2.2.8), so
that K'sep: k" = Kgep:(Ksep)'s bY 2.2.19. Now (K: & )gop(k' 1 K)gep = (Kbop:k’) X
((ksep)’:k) = (ksep:(ksep)')((ksep)l:k) = ksep:k = (K:k)sep as asserted. A
sketch of this proof is that ab = ¢ where a, b, ¢ are as indicated by the dia-
grams. [}

We close with the following theorem, which underlies part of the com-
parison of normal extensions, and Galois and radical extensions, discussed at
the end of 2.3. It is convenient here to use the language of k-algebras given
in Appendix A.

2.2.22 Theorem. If k k and k,[k are finite dimensional separable and
radical extensions of k respectively, then K = k, ®, k, (tensor product of
k-algebras) is a field extension of k = 1 ® k such that K,,, = k, ® | and
I?rad =1Q® kr-

Proof. We identify k with the subring 1 ® k of K via the mapping
y—=>1Q® y. We wish to show that the k-algebra K is a field. Thus, let
21 % ® y; € K — {0}. We may assume that x,, . . ., x, are linearly independent
over k. Choose e such that y,** ek for 1 < i < n. Then

(i xQ yt)p = i X" Q@ yP = Zn Xy ® L.
1 1 1
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Since x,”°, ..., x,* are linearly independent over k (by the separability of
k,Jk), the latter is nonzero, hence is a multiplicatively invertible element of K.
Thus, 37 x; ® y; is invertible and K is a field. [J

2.3 Normal and Galois extensions

We continue letting K be an algebraic extension of a field k of exponent
characteristic p and k,,, be the algebraic closure of k containing K.

2.3.1 Definition. K|k is normal if K is stable under the group Auty ke
of k-automorphisms of k.

Since any k-homomorphism from K into kj,; can be extended to a k-
automorphism of k,, (see 1.3.5), we have the following alternate conditions
for K/k to be normal.

2.3.2 Proposition. K|k is normal if and only if Aut, K is the set
Auty, kag|x Of restrictions of elements of Aut, ke to K.

2.3.3 Proposition. Let K be a normal algebraic extension of k contain-
ing k’. Then the following conditions are equivalent:

1. k'[k is normal;
2. k' is stable under Aut, K;
3. Autk k' = Autk Klk"

2.3.4 Theorem. KJk is normal if and only if K is the splitting field of
some set P of irreducible polynomials in k[ X].

Proof. Suppose first that K is the splitting field of a set P of irreducible
polynomials in k[ X]. Then K = k(Roots,,, P). Since k and Roots,,, P are
stable under Aut, k,y, K is also. Thus, K/k is normal. Suppose conversely
that K/k is normal. Let P = {f,(X) | x € K} where f,(X) denotes the mini-
mum polynomial of x over k. Since K is stable under Aut, kg, the orbit
Roots,,, fi(X) of x under Auty Kai is contained in K (see 1.4.9). Thus,
f+(X) splits in K. Since K = Roots P, K[k is a splitting field for P. []

2.3.5 Corollary. If K/k is normal, then K/k' is normal for any subfield
k' of K containing k.

Proof. If K is the splitting field of P over k, then K is the splitting field
for P over ¥'. [

2.3.6 Corollary. If K is a finite dimensional extension of k, then there
is a finite dimensional normal extension K’ of k containing K as subfield.

Proof. Let x,,..., X, be a basis for K/k. Then a splitting field X 'lk of
P = {f,,(X),...,fx,(X)} is a normal extension of K, and K'[k is finite
dimensional since K’ = k(Rootsg. P) and P is finite. []

Since the intersection of subfields K’ of k,,, which are normal extensions
of k is a normal extension of k, the above proposition says that the minimal
normal extension K™ of k containing K is finite dimensional.

I



Normal and Galois extensions 57

2.3.7 Definition. K™ is the normal closure of K.

The next proposition is a generalization of 1.4.12 and 1.4.13. The proof is
precisely the same, in view of 2.3.1.

2.3.8 Proposition. Let K/k be normal and G = Aut, K. Then K¢ = ko4
and Kk.,q is separable.

2.3.9 Corollary. Let K|k be normal. Then K = ko k aa.
Proof. This follows from 2.2.19 and 2.3.8. []

We now briefly introduce Galois extensions and then compare normal
extensions and Galois extensions. The main results on- Galois extensions are
in Chapter 3.

2.3.10 Definition. K|k is Galois if k is the fixed field K¢ = {x € K | o(X)
= x for o € G} of some subgroup G of Aut X.

Finite dimensional extensions of a finite field are Galois, by 1.5.7. We
state this for future reference.

2.3.11 Proposition. If K is a finite dimensional extension of a finite
field &, then K/k is Galois.

2.3.12 Proposition. The following conditions are equivalent.

1. K[k is Galois;

2. KJk is the splitting field over k of a set P of separable irreducible
polynomials in A[X].

3. K/k is normal and separable.

Proof. LetG = Aut, K. Supposethatk = K% letx e Kandletx,,..., x,
be the distinct roots of the minimum polynomial f,(X) of x over k. Then
g(X) =TIt (X — x,) is fixed by each ¢ € G, since

o(g(X)) = ]—1—[ o(X — x;) = I:[ (X — o(x) = 1?[ (X — x;) = g(X).
It follows that g(X) € k[ X]. Thus, f,(X) divides g(X) so that f,(X) is separable
and splits in K. Thus, P = {f,(X) | x € K} is a set of separable irreducible
polynomials in k[X] and KX is a splitting field of P over k, and 1 implies 2.
Suppose next that K is the splitting field of a set P of separable irreducible
polynomials in k[X]. Then Kjk is normal, by 2.3.4. Since the elements of
Roots P are separable over k and K = k(Rootsg P), it follows from 2.2.15
that K/k is separable. Thus 2 implies 3. Finally, let K/k be normal and
separable. Then K¢ = k.., = k, by 2.3.8, and K/k is Galois. []

2.3.13 Corollary. Let K/k be Galois and k' a subfield of K containing k.
Then k’[k is Galois if and only if £’ is stable under Aut, K.

Proof. KJk is normal and separable. Since k'/k is then separable, the
assertion follows from 2.3.3 and 2.3.12. [j
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The following two corollaries are counterparts of 2.3.5 and 2.3.6. The
proofs are similar and we omit them.

2.3.14 Corollary. Let K/k be Galois. Then K/k' is Galois for every
subfield k" of K containing k. .

2.3.15 Corollary. Let K/k be finite dimensional and separable. Then
Krorm js a finite dimensional Galois extension of K containing K as subfield
(see 2.3.7).

The next theorem shows that an algebraic extension K of k is a normal
extension of k if and only if it is k-isomorphic to a field extension of k£ of the
form kgay Qi kraqa Where kfkgq and k,.q/k are algebraic Galois and radical
extensions of k respectively (see A.2 and 2.2.19).

2.3.16 Theorem. K|k is normalif and only if K = Kkgepkraq and kgep/k is
Galois.

Proof. Suppose first that K/k is normal. Then K = kgepkpaa, by 2.3.9.
Now kg, is stable under Aut, K. Thus, kg,/k is normal (see 2.3.3), hence
Galois by 2.3.12. Suppose conversely that K = kg, kraq and that kg /k is
Galois. Then kg, k;qq are stable under Aut,, ke (see 2.2.7), so that K/k is
normal. [

2.4 Composites

Let k be a field, K an extension field of k. For subrings 4, B of K contain-
ing k, we let AB be the set of sums >7 x;y; where x;€ 4, y,e Bfor1 < i < n.
Then AB is a subring of K containing k.

2.4.1 Proposition. Let A and B be subfields of K containing k and
suppose that x is algebraic over B for x € 4. Then 4B is a subfield of K and
AB|B is algebraic.

Proof. Letz = 37 x;y; be a nonzero element of AB where x;€ 4, y;€ B
forl <i<nThenz z *eB(xy,..., x,) = B[xy,...,%,] < AB (see 1.2.5).
Thus, 4B is a subfield and 4B/B is algebraic. []

2.4.2 Proposition. Let A and B be subfields of K containing k. If A/k
and B/k are finite dimensional/algebraic/algebraic and normal/algebraic and
Galois/algebraic and separable/algebraic and radical, then so is AB/k.

Proof. Ifa;(1 <i < m)span 4 overk and b, (1 < j < n)span Boverk,
then ab, (1 <i <m,1 <j < n) span AB over k. Thus, AB/k is finite
dimensional if A/k and B/k are. Clearly 4 < kgjg, B < kge imply AB < kg
The same is true for k., and for k4. If 4/k and Bk are algebraic and normal/
Galois, take sets P,, Py of irreducible polynomials/separable polynomials in
k[X]such that A/k, B/k are splitting fields for P, Py respectively. Then AB/k
is the splitting field for P, U Py, and ABJk is an algebraic normal/Galois
extension.

2.4.3 Proposition. Let A and B be subfields of K containing k. If A/k is
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finite dimensional/algebraic/algebraic and separable/algebraic and radical,
then so is 4B/B.

Proof. Let S be a set spanning 4 over k and note that 4B now is B(S).
Suppose that the elements of S are algebraic over k. Then B(S)/B is algebraic
(finite dimensional if S is finite), by 1.2.5. If the elements of S are separable/
radical over &, then they are separable/radical over B and B(S)/B is separable/
radical by 2.2.15. []

2.4.4 Proposition. Let A, B be subfields of K containing k. Suppose
that A/k is algebraic and normal/Galois. Then 4B/B is normal/Galois and 4
is stable under Auty 4 B. Furthermore, the groups Aut; 4B and Aut,., 4 are
isomorphic under the restriction mapping ¢ > 0|, (o € Auty AB).

Proof. Consider the diagram

BAlg

e

’,"AB
N
A B
NS

ANB

k

where B, is an algebraic closure of B containing 4B and k' is the algebraic
closure of k in By),. Then k' is stable under Autg B,,.. But A/k is normal and
stable under Aut, k' (see 2.3.3). It follows that A is stable under Auty B,,.
Thus, AB is also stable under Auty By, and AB/B is normal. If A/k is also
separable, then 4 B/B is also separable, by 2.2.8, so that 4B/B is Galois if A/k
is Galois. The homomorphism f(c) = o|, is obviously injective on Auty AB.
We now show that f'is surjective and assume first that 4:k < oo. The groups
H, = f(Autz AB) and H, = Aut,.5 A are then finite subgroups of Aut A.
Thus, we can show that they are equal by showing the fields 471, 4%z to be
equal (see 2.2.17). But A¥:1 = {x € A|x is radical over B} = A%z, by 2.2.7.
Thus, f(Aut; AB) = H, = H, = Aut,.5 A and fis surjective. We now drop
the assumption that 4:k < co and let A5 = k(S) for SeS where S is the
collection of finite subsets S of 4 stable under Aut, A. Then Ag/k is finite
dimensional and normal, and 4 = | Jses 45. For o € Aut, 5 4, let o5 = ol
and let =5 be the element of Auty AgB such that 75, = o5. For S; < S,,
we have o5, 4, = 05,, therefore also 7, 45,8 = Ts;- Thus, 7 = Uses 75 i85 2
B-automorphism of | Jses AsB = AB. Clearly, f(7) = 7|, = o. Thus, f is
surjective. []
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2.4.5 Proposition. Let A, B be subfields of K containing k and suppose
that A/k and B/k are algebraic and normal. Then the homomorphism
f: Aut, AB—> Aut, A x Aut, B (outer direct product) defined by f(o) =
o|. x o|p is injective.

Proof. Let o € Kernel f. Then o(x) = x for x € A U B, thus for x € AB.
Thus, f has trivial kernel and f'is injective. []

2.4.6 Definition. A property P of groups is injective if

1. any subgroup H of a group with P has P;
2. If G and H are groups having P, then G x H (outer direct product)
has P.

The properties ““ G is Abelian,” “ G is solvable,” “Exp G dividesn,” nbeing
a fixed positive integer, are injective properties of groups G.

2.4.7 Definition. An extension K/k is a P-extension if K|k is separable
algebraic and Aut K**™/k has P (see 2.3.7). ‘

2.4.8 Definition. 1If K|k is a P-extension where P is the property of
being cyclic/Abelian/solvable/of exponent dividing s, then K/k is said to be
cyclic| Abelian/solvable|of separable exponent dividing n.

The following proposition is an immediate consequence of 2.4.5.

2.4.9 Proposition. Let A, B be subfields of K containing k. If P is in-
jective and A/k, Bjk are P-extensions, then 4B/k is a P-extension. In par-
ticular, if A/k, B/k are Abelian/solvable/of separable exponent dividing n,
then 4B/k is Abelian/solvable/of separable exponent dividing n.

2.4.10 Definition. We let kopei/ksorv/-k denote the union of all subfields
A of K containing k such that 4/k is Abelian/solvable/of separable exponent
dividing n. If K = k,,, these sets are denoted kapei/Ksov/sk and we let
Kavel = ok N kaper-

The sets Kape, Ksorvs ok are subfields of K containing k, by 2.4.9. The field
extensions Kaper/Ksorv/nk/nkaves Of k are normal and every finite dimensional
subextension is Abelian/solvable/of separable exponent dividing n/Abelian
of separable exponent dividing n.

2.4.11 Proposition. The extensions Kkppei/nk/-Kapes are Abelian/of
separable exponent dividing n/Abelian of separable exponent dividing .

Proof. Let o, 7 € Aut, kape and let k' be a subfield of k,p, containing k
such that k'/k is normal and Abelian. Then 07|,y = ol 7|p = 7ol = 70|k
Since kape: is the union of such k', o = 70 and kjpa/k is Abelian. Next let
o e Aut, k. and let k' be a subfield of .k containing & such that k’/k is normal
and of separable exponent dividing n. Then o"|,, = (o|x)" is the identity
mapping on k'. Since ,k is the union of such k', o™ is the identity on k and ,k
is of separable exponent dividing n. Since ,kapa = nk N Kape is normal over
k, we have

Auty, (wkape) = AUty (oK)| eape  aNd Aty (2Kape) = Auty (K aveD) | eavers
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by 2.3.2. Thus, ,kspa is Abelian of separable exponent dividing n over
k. 0O

We can blow up an arbitrary field k£ as follows in terms of these con-
structions:

kAlg

Ksep

k Solv

N\

nk \\ k Abel
nk Abel

The bottom extension ,kpei/k is an important part of the extension kg.,/k
and is discussed in 3.10.

E.2 Exercises to Chapter 2

E.2.1 (Fundamental Theorem, of Algebra). Let f(X) be an element of
R[X] of odd degree. Show that there exist a, b € R with a < b such that f(a)
and f(b) are nonzero of opposite sign. Show that f(c) = 0 for some ¢ such
that a < ¢ < b. (Hint: Otherwise, there is a sequence of pairs (a;, b;) with the
same property as (a, b) such that ¢ < a, < ay---, b > b, > by---, and
b, — a; converges to 0. Show that a; and b; are Cauchy sequences and
f(c) = 0 where c is their limit).

E.2.2 (Fundamental Theorem of Algebra). Letf(X) = [ (X — x;) be an
element of R[.X], the x; being elements of an algebraic closure of C. Show that

LgX) =1L« (X — (x+x) and (X)) = [Ti<; (X — x;x;) are ele-

ments of R[X] of degree n(n — 1)/2;

2. if x; + x; and x;x; aré elements of C, then x; and x; are elements of C.
E.2.3 (Fundamental Theorem of Algebra). Usingthe precedingtwo exercises,
prove by induction on the highest power of 2 dividing Deg f'(X) that every
nonconstant f(X) in R[X] has all its roots in C. Show that C is algebraically
closed. (Hint: the highest power of 2dividingn(n — 1)/2 is less than that for n).
E.2.4. Show that X1° + X + 1 is not irreducible over Z;. What is the
radical exponent of X° + X° + 1 over Z;?

E.2.5. Let K = Zs(X) be the field of rational expressions in an indetermi-
nant X over a field of five elements. Let & = Z5(X*° + X° + 1). Show that

(a) K:k = 10;

(b) K]k is neither separable nor radical. Describe k4.
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E.2.6. Let K = Q(x) where x is a complex root of X* + X2 + 1. How
many homomorphisms are there from K into C?

E.2.7. Show that every quadratic extension K/k is normal.

E.2.8. A cubic extension is an extension K/k of degree 3. Show that if K/k is
a cubic extension which is not normal and if L is the normal closure of K
over k, then
(a) L:k = 6;
(b) L has precisely one subfield k&’ containing k such that k'[k is
quadratic;
(¢) L = Kk’ (internal tensor product) (See Appendix A).

E.2.9. Determine for which prime numbers p the polynomial X?+ 1 in
Z,[X] is irreducible.

E.2.10. Show that X2 + X — ¢ is irreducible in K[X] if and only if
¢ =d? + dfor some de K. ’

E.2.11. Let f(X) be a monic polynomial in Z[X]. Show that if x€ Q is a
root of £(X), then x € Z. If £(0) is prime, then f(X) has at most three different
roots in Q. What can be said if f(0) = p?g where p and g are prime ?

E.2.12 (Artin). Let K/k be a finite dimensional field extension and suppose
that & is infinite. Show that
(@) if K = k(x) and k' is a subfield of K containing k, then k' = k(S)
where S is the set of coefficients of the minimum polynomial of x
over k';
(b) if Kk is simple, then K has only finitely many subfields containing k;
(¢) if x, y € K and k(x, y) has only finitely many subfields containing k,
then k(x, y) = k(x + ay) for infinitely many elements a of k;
(d) if K has only finitely many subfields containing &, then K is a simple
extension of k.

E.2.13. Let K/k be a finite dimensional separable extension. Show that K
has only finitely many subfields containing k.

E.2.14. Construct a splitting field K for (X2 — 2)(X? + X + 1) over Q and
find s € K such that K = Q(s).

E.2.15. Construct a splitting field K for (X2 + 2)(X — D(X* + X — 1)
over Zg and find s € K such that K = Zy(s). .

E.2.16. Construct x such that K = Q(x) where K is the splitting field over
Q of X2 — 3and X% - 5.

E.2.17. Let K/k be an extension of degree p? (p being the characteristic of K
and p being nonzero). Show that K/k is not a simple extension if and only if
K|k is radical of exponent one (that is, x € k for all x € K).

E.2.18 (Kaplanski). Let K/k be a finite dimensional extension and suppose
that K = kgep() for some y € K. Show that K/k is a simple extension. (Hint:
Show that K has only finitely many subfields k' containing k by considering
all k' with a fixed ki, and replacing k by kgp).
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E.2.19. Let K/k be an algebraic extension. Show that k,,4 is a subfield of K
containing k. (Use 2.2.5 and the equations (st)? = s%¢%, (s + t)? = s* + 17
for s, t € K).
E.2.20. Let K = ko(Xy, ..., X,) be the field of rational expressions in the
algebraically independent variables Xi,..., X, over the field k, and let
k = ko(X1%, ..., X0P).
Show that
(a) K/k is a radical extension of degree p™;
(b) K = k(X7)---k(X,) (internal tensor product of k-algebras) (see
Appendix A).
E.2.21. Let & be a field of characteristicp > 0 and let a € k. Show that either
X? — X — aisirreducible over k, or X? — X — a has p distinct roots in k.
E.2.22 (Perfect fields). Show that
(a) a field k is perfect if and only if every finite d1mens1onal extension K
of k is separable;
(b) k is perfect if and only if k¥ = kP (where p is the exponent charac-
teristic of k and k? = {x? | x e k});
(o) if k is perfect and k' is a finite dimensional extension of k, then k' is
perfect; A
(d) if k' is perfect and & is a subfield such that k":k < oo, then k is perfect.
E.2.23. Let K/k be finite dimensional of characteristic p. Show that if K/k
is not separable, then K has subfields k, such that K/k, is radical of degree
p" for every positive integer n.
E.2.24. Show that the hypothesis that & be infinite can be dropped in
Theorem 2.2.10 without affecting the validity of the conclusion.
E.2.25. Show that for a finite dimensional extension K/k to be normal, it is
necessary and sufficient that for any monic irreducible element /(X) of k[ X]
having a root in K, f(X) = [[? (X — x;) with x,..., x, in K.
E.2.26. Give an example of a finite dimensional normal extension K of k&
having a subfield k' containing &k such that k’/k is not normal.
E.2.27. Describe a finite dimensional field extension K of k which is not
normal over k but which has a subfield k&’ containing k such that K/k’ and
k'[k are normal.
E.2.28. Give an example of a Galois extension K of k of degree 6 having a
subfield k' containing k such that k’/k is not Galois.
E.2.29. Prove the Chain Rule g(f(X))' = g'(f(X)f'(X) for f(X),
g(X) e K[X]
E.2.30. Prove Taylor’s Theorem f(X) — f(x) = 2% 1/i! fPx}X — x)* for
f(X)e K[X], K being of characteristic 0 and f®(X) being appropriately
defined.
E.2.31. Prove the formula

G- S _ St
AR A

+ L

+ot 7
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for Logarithmic Differentiation, f;,...,f, being nonzero elements of
K[X].

E.2.32. For f(X) = [Tt (X — x,) in K[X], show that

fXY = 2 A - x).

E.2.33. Show that the derivative (f(X)/g(X))’ is well defined by

(—ﬁg—i) = Z00° ;)2 (f(X)g(X) — f(X)g(X))

for f(X)/g(X) € K(X) (field of fractions of K[XT). Derive the formulas for
derivatives of sums, products and quotients in K(X).
E.2.34. To what degree of generality can one prove the following in K(X):

Chain Rule
Taylor’s Theorem
Formula for Logarithmic Differentiation.

E.2.35. Let (f(X)") = 0, where f(X) e K[X] and K is of characteristic
p > 0. Show that f(X) = g(X?) + Xh(X?) for suitable g(X), i(X) € K[X].
What can be said if f™(X) = 0?

E.2.36. Show that Q(v'2 + V¥/3) contains V2 and V3.

E.2.37. Show that “G is nilpotent” is an injective property of groups.
Show that if 4 and B are subfields of K containing k and 4/k, B/k are finite
dimensional and nilpotent, then 4B/k is nilpotent.



3 Classical Galois theory

We now turn to the study of Galois extensions K/k. These are studied by
comparing the structure of K/k with that of its Galois group Aut, K. We
begin with some general material on isomorphisms and groups of auto-
morphisms of fields which leads to the Galois Correspondence Theorem (see
3.3) and the Normal Basis Theorem (see 3.4). We then specialize to the study
of cyclotomic extensions and extensions K/k whose Galois group Aut, X is
cyclic, Abelian or solvable.

3.1 Linear independence of homomorphisms

Let 4 be a group, L a field and ¥ a vector space over L. Let o4, . . ., o, be
distinct elements of the set Hom (4, L*) of homomorphisms from A4 to the
group L* = L — {0} of units of L and letv,, ..., v, € V. Let 37 ov; denote
the function from 4 to ¥ which maps a € 4 to 3} o(a)v; € ¥ and let 0 denote
the function mapping each element ae 4 to Oe V. Then oy, . . ., o, are linearly
independent over ¥ in the following sense.

3.1.1 Theorem. If 3;ow;, thenv, =--- =p, = 0.

Proof. Suppose not and take o,,..., 0, and v,, ..., v, (not all v, Zero)
with n minimal such that 3% o, = 0. By the minimality of n, v, # 0 for
1 < i < n. For a, b€ A, we then have

n n

0= 2 oab)y; = Z a@oy(byo,

n

= o,(a) :Z oi(b)y; = Z on(a)oy(b)v;.

1
It follows that

0= nil (oi(@) — on(@)oy(b)v, forallbe 4,

therefore that 0 = X}~! o; where v; = (0)(a) — o,(a))v;. By the minimality
of n, the v] are 0. Since the v; are nonzero, o,(a) = o,(a), for all i and a € A.
Thus, o; = o, for all i, contradicting the distinctness of the ;. Thus, the o, are
linearly independent over V. []

3.1.2 Corollary. Lleto,,..., o, be distinct homomorphisms from a field
K'to a field L and let vy, . . ., v, be elements of a vector space ¥ over L. Then
2oy =0=>0v, = =p,=0.

65
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Proof. Taking A4 to be the group K* = K — {0} of units of K,
G114 - - -» On14 are distinct elements of Hom (4, L*). Now apply 3.1.1. 1[I

3.1.3 Corollary (Dedekind Independence Theorem). Let oy,...,0,
be distinct homomorphisms from a field K to a field L. Then oy, ..., o, are
linearly independent over L in the vector space F(X, L) of functions from K
to L.

Proof. Take V = Lin3.1.2. []

3.2 Galois Descent

Let K be a field, G a subgroup of the group Aut K of automorphisms of K.
We are concerned here with the passage (called descent) from K to K€. At
times, it is necessary to assume that the orbits of G in K are finite, that is, that
G acts continuously on K (see 0.4.5). This is equivalent to the assumption
that K/K€ is algebraic, as we showed in 1.2.8.

3.2.1 Definition. The subgroup G of Aut K is algebraic if the orbits of
G in K are finite.

3.2.2 Definition. A G-product on a vector space V over K is a mapping
from G x Vto V, denoted (o, v) — o(v), such that

1. V with o(v) is a G-space, that is, e;(v) = v and o(7(v)) = (o7)(v) for
g, 7€ G, v € V, where ¢4 is the identity element of G;
2. ofv + w) = o(v) + o(w) and o(xv) = o(x)o(v) for v, we V, xe K.

A G-product on ¥ over K is continuous if the G-orbits in V are finite (see
0.4.5).

The G-products o(v) on a vector space V correspond bijectively to those
homomorphisms f from G to the group Aut (¥, +) of automorphisms of the
additive group (¥, +) of V such that f(o) is o-linear for ¢ € G, that is, such
that f(o)(xv) = o(x)f(o)(v) for x € K, v € V. The correspondence is given by
f(o)) = o(v).

Starting from a vector space V'* over a subfield k£ of K¢, we get a vector
space V¥ = K ®, V* over K with scalar product such that x(y ® v) =
(xy) ® v for x, ye K and ve V. We also get a G-product on V¥ such that
o(x ® v) = o(x) @ v for x € K, v € V* (see T.4). Note that if the orbits of G
in K are finite, then the orbits of G in V¥ are finite. The vector space V¥/G-
product o(x ® v) is called the vector space/G-product obtained from V* by
ascent from k to K. The k-subspace 1 ® V* is isomorphic to ¥V* and is a k-
form of V¥ in the sense of the following definition (see T.4).

3.2.3 Definition. Let V be a vector space over K and let k be a subfield
of K. Then a k-form of V is a k-subspace V* of ¥ such that a k-basis for V¥ is
a K-basis for V.

We now proceed to prove that if ¥ is a vector space over K with continuous
G-product o(v), V¢ = {v € V| o(v) = v for o € G} is a K%form of V. Roughly
speaking, this amounts to saying that ¥ and the given G-product on V are
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obtained from the KS-space V¢ by ascent from K¢ to K. The K%space V¢ is
called the vector space obtained from ¥ and the given G-product on V by
Galois descent from K to K¢ A first step in the proof is the following
proposition.

3.2.4 Proposition. Let G be finite, let ¥ be a vector space over K and let
o(v) be a G-product on V. For ve V, let § = >,.¢ o(v). Then the & are ele-
ments of the set ¥¢ = {ve V| o(v) = v for o € G} of fixed points of Gin V,
and for each nonzero v € V, there exists a € K such that av # 0.

Proof. Since
70) = D (o) = . ov) =,

0€G oeG

the & are in V6. Now suppose that av = 0 for all a € K. Then

0= > ola) = > o(a)o() foraek,
oceq oEG
so that 0 = Y ¢ ofo(v)] and o(v) = 0 for 0 € G by 3.1.2. But thenv = 0, a
contradiction. Thus, av # O for some ac K. [

We can now prove the following Galois Descent Theorem.

3.2.5 Theorem (Speiser). Let V be a vector space over K, o(v) a
continuous G-product on V. Then V¢ is a K¢form of V.

Proof. We first show that if vy, . . ., v, are linearly independent elements
of V¢ over K€, then vy, . . ., v, are linearly independent over K. Suppose not
and let vq, . . ., v, be KClinearly independent elements of ¥¢ with n minimal
such that >7 ¢,v, = 0 for suitable ¢; (not all zero) in K. Then the c; are all
nonzero, by the minimality of n, and we may take ¢, = 1 (by dividing each ¢;
by the original ¢,). For o € G, we then have >7 o(c;)v; = 0, since the v; are in
V€, so that 3771 (¢, — o(c))v; = 0. By the minimality of n, ¢; = o(c;) for
l<i<n-—1landoeG.Thus, cy,...,c,_;and ¢, = 1 are elements of K¢,
contradicting the linear independence of vy, ..., v, over K% We next show
that V¢ spans ¥ over K, thereby completing the proof. We suppose first that
G is finite and let W be the span of V¢ over K. Then we have a G-product on
VW, defined by o(v + W) = o(v) + WiloroceG,veV.Ifv + Wis a non-
zero element of V/W, then a(v + W) is nonzero for some a € K, by 3.2.4. But
av + W) =av + Wandave V¢ < W,so thata(v + W) is zero foraec K.
Thus, V/W has no nonzerov + Wand ¥V = W. Now we drop the assumption
that G is finite and let v € ¥. We claim that v is contained in the K-span of V€.
The orbit v of v under G is finite. Thus, the normal subgroup

H={oeG|ow)=w for we V€

is of finite index in G. We may regard the finite group G’ = G/H as a sub-
group of the group Aut K’ of automorphisms of the field k' = K*. The given
G-product on ¥ now induces a G’-product on the K'-span V"’ of V. Since G’ is
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finite, ¥ is the K'-span of ¥'¢". Since ve ¥’ and V' < V¢, v is therefore in
in the K-span of ¥V¢. Thus, ¥V is the K-span of V¢, []

If ¥%°is a K%form of a vector space ¥ over K, then we have a correspond-
ing G-product in ¥ such that V¢ = VX° namely, o3} x;) = 37 o(x)v;
where the v; form a basis for V¢ over K¢ and the x; are in K. (This G-product
is essentially the G-product in V¥ = K ®@ge VX obtained by ascent from K¢
to K as described earlier.) If the orbits of G in K are finite, then the orbits of
G in V with respect to this G-product are finite. The following proposition is
an immediate consequence of these observations and the above Galois
Descent Theorem.

3.2.6 Proposition. Let G be algebraic and let ¥ be a vector space over K.
Then the mapping defined above maps the set of K°-forms of ¥ bijectively
onto the set of G-products on ¥ such that the orbits of G in V are finite.

We now apply the Galois Descent Theorem to the K-vector space F(X, K)
of functions from a G-space X to K. This is then used in the next section in
giving an otherwise self-contained proof of the Galois Correspondence
Theorem for algebraic extensions. (See 2.2.17 for a more classical proof for
finite dimensional extensions.)

3.2.7 Definition. For feF(X, K) and ¢ € G, let o(f) be the element of
F(X, K) defined by the diagram

X
f

(]
—_—
K —
o

-

o(f)

N —

that is, the function on X defined by o(f)(x) = o(f (o~ (x))).

3.2.8 Proposition. The mapping G x F(X, K) — F(X, K) sending (o, f)
to o(f) for o € G, fe F(X, K) is a G-product on F(X, K). If X is finite and G
is algebraic, this G-product is continuous and the set FO(X, K) = {fe
F(X, K) | o(f(x)) = f(a(x)) for o € G, x € K} of G-linear functions from X
to K is a K%form of F(X, K).

Proof. We have o(f) = o, fo, 1, where o,: X — X is defined by o.(x) =
o(x) for x € X and the product is composition of functions. The equations
erfer ™t = fi(on) flor), ™t = oy(rofri Do or(fi + fo)or ™ = o fro ™+
orfoor ™Y, op(xf)o, "t = o(x)o, fo, =1 are then easily verified and show that
o(f)is a G-product on F(X, K). Next, let X be finite and let the orbits of G in
K be finite. Then for any feF(X, K), the possible values for o(f)(x) =
o(f(e~1(x))) are finitely many, being contained in the orbits of the finite set
Image f. Since X is finite, it follows that the orbits Gf of G in F(X, K) are
finite. Now the Galois Descent Theorem applies, so that F6(X, K) =
F(X, K)% is a K°form of F(X, K). [I
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3.3 The Galois Correspondence Theorem

In this section, K is a field and G a subgroup of Aut K. We recall that for
subfields k of K, K|k is Galois if k = K¢ for some subgroup G of Aut K. The
analogous concepts for subgroups G of Aut X is the following one.

3.3.1 Definition. G is Galois if G = Aut, K for some subfield k of K.

We now let F = {k|k is a subfield of K and K/k is algebraic and Galois}
and G = {G|G is a subgroup of Aut K and G is algebraic and Galois}. The
mappings k > Aut, K on F and G+ K% on G map F to G and G to F (see
3.2.1, 1.2.8). Moreover, for k€F and G = Aut, K, k = K¢ since K[k is
Galois; and for G G and k = K¢ G = Aut, K since G is Galois. We have
now established that these mappings are bijective inverses tweeen F and G.
The mapping T':F — G, defined by I'(k) = Aut, K for k €F, is called the
Galois Correspondence between F and G. We state the bijectivity of I' for
future reference.

3.3.2 Proposition. T is a bijection from F to G.

The purpose of this section is to establish some fundamental properties
of the Galois Correspondence between F and G. The main tool is Galois
Descent.

We begin by taking the set X of 3.2 to be the set G/H = {rH | r € G} of left
cosets of a subgroup H of G and regard G/H as G-space with product
o(rH) = (67)H (0 € G,He G/H). Each xe€ K¥ determines a function
% eF(G/H, K), defined by £(+H) = 7(x) for rHe G/H. In fact, the set

F9(G/H, K) of G-linear functions from G/H to K is the set k¥ = {£| xeKH}.
For on the one hand, £(o(H)) = £((o7)H) = (o7)(x) = o(7(x)) = o(£(vH)).
And on the other, if fe F(G/H, K) and x = f(eH) where e is the identity of
G, then x € K¥ since o(x) = o(f(eH)) = f(cH) = f(eH) = x for o € H, and
f = £since f(+H) = f(r(eH)) = 7(f(eH)) = 7(x) = £(H) for 1H € G/H. If
G is algebraic and G/H is finite, then it follows from 3.2.8 and 3.2.5 that I?H
is a KG-form of F(G/H, K). We now have essentially proved the following

generalization of 2.2.7, which is the main part of the Galois Correspondence
Theorem for algebraic extensions.

3.3.3 Theorem. Suppose that G is algebraic and let H be a subgroup of
G of finite index. Then K¥:K¢ = G: H.

Proof. We have just seen that Ié}* is a K%form of F(G/H, K). 1t follows
that K¥: K¢ — KH:KS = F(G/H, K):K = G:H. [

3.3.4 Corollary. Suppose that G is algebraic and let H, H' be subgroups
of G of finite index. Then K¥ = K¥ if and only if H = H'.

Proof. Suppose that K¥ = K¥', Then K¥ = K*" where H" is the sub-
group of G generated by H and H'. But then H < H" and G: H = K¥:K% =
K¥:K¢® = G:H". Thus, H = H" so that H > H'. Similarly, one shows that
H' o H, thusthat H = H'. []
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Recall that the closure H of H in G (in the Krull Topology of G) is
H = (Nyex NH for H < G, where N is the set of normal subgroups of G of
finite index, and H is closed if and only if H = H. Recall also that the sub-
groups H of finite index in G are closed (see 0.4.1).

3.3.5 Proposition. Suppose that G is algebraic and let H, H' be sub-
groups of G. Then K¥ = K¥ and K¥ = K¥ if and only if H = H'.

Proof. Let o H and xe KH. The orbit Gx of x is finite, so that
N = {re G| 7(y) = y for y € Gx} is a normal subgroup of G of finite index.
Thus, o € NH. But then o(x) = x, since this is true of the elements of N and
H. 1t follows that K¥ = K¥, hence that K¥ = K%, In particular, K¥ = K¥
if H = H'. Suppose, finally, that K¥ = K# and let N be any normal sub-
group of G of finite index. Then NH and NH' are subgroups of G of finite
index and K¥¥ = K¥¥', Thus, NH = NH' by 3.3.4. Since NH = NH' for all
such N, H=H'. [

3.3.6 Corollary. Let K|k be algebraic. Then Aut, K is algebraic and the
Galois subgroups of Aut, K are the closed subgroups of Aut, K.

Proof. The subgroup Aut, K is algebraic, by 1.2.8. Suppose that G is a
Galois subgroup of Aut, K. Then K¢ = K% by 3.3.5, and we have G <
Autge K = G < G. Thus, G = G and G is closed. Suppose, conversely, that
G is a closed subgroup of Aut, K. Then K¢ = K% where G’ = Autge K.
Since G is closed and G’ is closed by the preceding discussion, G = G’, by
3.3.5. That is, G = Autge K and G is Galois. []

We now let K/k be an algebraic Galois extension and recall that K/k' is
Galois for any subfield £’ of K containing k (see 2.3.14). Thus, letting F, be
the set {k’|k’ is a subfield of K containing k} of subfields of K/k and Gy, the set
of closed subgroups of Aut, K, the above corollary together with 3.3.2 says
that the mapping I';, = 1'}g, is a bijection from F,, to G,. The mapping ', on
F, is called the Galois Correspondence between F, and G,.

We next let ¢ € Aut,, K, k' € F,, and note that o(Aut,. K)o~ = Aut,g K
(see E.1.42). Thus, o(Aut,, K)o~ ! = Aut, K if and only if (k") = k’, by the
injectivity of I';. It follows that k'/k is normal (and therefore Galois) if and
only if Aut,. K is a normal subgroup of G, by 2.3.3.

For k' €F, and k'/k Galois, the restriction mapping o+>ol, is a
surjective homomorphism from Aut, K to Aut, k', by 2.3.3. The kernel
of this homomorphism is Aut,, K so that it induces an isomorphism from
Aut,, K/Aut,. K to Aut, k'.

We summarize the above observations in the following Galois Corre-
spondence Theorem for algebraic extensions.

3.3.7 Theorem. Let K/k be an algebraic Galois extension. Then

1. the mapping I';, defined by I' (k") = Aut,. Kis a bijection from the set
F;. of subfields k&’ of K containing k 10 the set G, of closed subgroups of
Aut, K;
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2. a subfield k' € F, is Galois over k if and only if the corresponding
subgroup G’ = I'y (k') is normal in Aut, K;

3. if ¥’ € F, is Galois over k, then the restriction mapping o +> ol is a
surjective homomorphism from Aut, K to Aut,k’ with Kernel
Aut,. K and induces an isomorphism from Aut, K/Aut,. Kto Aut, k'.

Letting K/k be a finite dimensional Galois extension, the Galois Corre-
spondence I’ is a bijection from the set F;, of all subfields of K/k to the set G,
of all subgroups of Aut, K. Since Aut, K is then finite, it follows that K/k has
only finitely many subfields. More generally, this is true of finite dimen-
sional separable extensions.

3.3.8 Proposition. Let K/k be a finite dimensional separable extension.
Then K/k has only finitely many subfields. (See 2.3.15.)

Proof. There is a finite dimensional Galois extension K" of k con-
taining K and K®*™/k has only finitely many subfields. [J :

The condition that an algebraic extension K/k have only finitely many
subfields is equivalent to the condition that K/k be simple (see E.2.12). This
together with the simplicity of a finite dimensional separable extension K/k
(see 2.2.13) provides an alternate proof of the above proposition. Conversely,
this and the above proposition provide an alternate proof of the simplicity of
a finite dimensional separable extension K/k.

We conclude this section with a comparison of decompositions of a Galois
extension K/k with decompositions of its Galois group G. The kinds of
decompositions that we have in mind are as follows.

3.3.9 Definition. Let G,,..., G, be subgroups of a group G. Denote
{oy- ‘0, | 0,€Gy,...,0,€Gy} by G,---G, Then we say that G’ is the
direct product of Gy, ..., G, over G, written G' = G - - - G, (direct product
over G), if

1. the G, are closed normal subgroups of G;
2. G =Gy -Gy
3. Foralli, G,N G']/|G, = 1 where G'/|G; = Gy -+ - G;_1Gi 41+ Gy,

The condition G’ = G, - - - G,, (direct product over G) is equivalent to the
conditions G’ = G, - - - G, (internal direct product) and G, . . ., G, are closed
normal subgroups of G (see 0.2).

3.3.10 Definition. Let K|k be a Galois extension and let k4, ..., k, be
subfields of K containing k. Then k' is the disjoint product of k,, . . ., k,, over
k, written k' = ky - - - k,, (disjoint product over k), if

1. the k; are normal extensions of k;
2.k = ki kq;
3. fOI‘ all i, ki N k’//ki = k Whel'e k’//k = k]_ .. 'k£_1k1+1 et kn.
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3.3.11 Proposition. Let K[k be Galois and G = Aut, K. Then

1. if G = G, - - - G, (direct product over G) and k; = K%/ for all i, then
K = k; - - - k, (disjoint product over k);

2. if K = k; - - - k, (disjoint product over k) and G; = Autyy;, K for all i,
then G = G; - - - G, (direct product over G);

3. 1> G//G;— G — Aut, k, — 1 is exact, in 1 and 2, where G//G; — G is
inclusion and G — Aut, k; is restriction (1 < i < n);

4. G— Auti ky x -+ - x Auty ky, defined by o> o, X -+ X oy, isan
isomorphism.

Proof. The proof is based on the Galois Correspondence Theorem. Let
G = G,--- G, (direct product over G) and k; = K%/% for all i. Let ¢ =
o, - - - o, be a typical element of G, o; € G; for all i. Then o, is the identity for
i # j. Thus, o; g, is the identity for all j. Letting x € k; N K//k,, we have
o4x) = x for j # i since x € k; and o/(x) = x for j = isince x € K/[k;. Thus,
o(x) = x. It follows that Auty, g, K = G = Aut, K. Thus, k; N K[k, = k.
Next, suppose that ol ..., is the identity. Then oy, is the identity and
o, € Aut,, K = G//G,. Thus, ¢;€ G; N G//G; = 1 and o, is the identity on K.
Thus, o is the identity, that is, Aut,..,, K = 1 = Autgy Kand k, ---k, = K.
The k; are normal over k since the G//G; arenormalin G. Thus, K = k, - - - k,,
(disjoint product over k).

Next, let K = k&, - - - k,, (disjoint product over k) and G; = Aut,;, K for
all i. Then the G, are closed and normal in G and we prove that G = G, - - - G,
(direct product over G) by induction on n. Let 4 = k,, B = ky- - - k,. Then
K = ABand A N B = k. Recall that Autz; AB and Aut,~z 4 are isomorphic
under restriction to A4 (see 2.4.4). In the present case, Aut; K and Aut, A4 are
isomorphic under restriction to 4, and Aut, K and Aut, B under restriction
to B. Thus, if o € G, there exists o; € Autg K, 0, € Aut, Ksuchthate|, = oy,
and o|z = o55. NOoW o = g,0, and we have shown that Aut, K =
Auty K Aut, K. Next, let o e Auty KN Aut, K. Then o(x) = x for xe
Bu A, hence for xe BA = K. Thus, Autz; KN Aut, K=1 and G =
Autg K Aut, K (internal direct product). Now Autz K = G;, and we claim
that Aut, K = G, - - G, (direct product over Aut, K). In fact Aut, K and
Aut, B are isomorphic under restriction to B and, by induction, Aut, B =
Gy - - - Gy, (direct product over Aut, B) where G; = Autgy, B-for2 < i < n.
The subgroup of Aut, K corresponding to G; = Autg, B under the restric-
tion isomorphism is G; = Autg,, Kfor2 < i < n. Thus, Aut, K = Gp--- G,
(direct product over Aut, K). It now follows that G = G,G; - - - G, (direct
product over G).

NowletG=G,---G,, K=k, ---k,beasinland 2. By 1, k, = K%Cs,
By the proof of 2, G//G; = Aut,, K and G — Aut,, k, is surjective. It follows
that 1 — G//G, — G — Aut, k; — 1 is exact. The same argument applies
upon replacing 1 by ifor1 < i < n. .

Since G = G, - -G, (direct product over G), the exactness of the se-
quences 1— G//G;— G — Aut, k;~>1 imply that G— Aut, k; x -+ X
Aut, k, is an isomorphism. For if =, € Aut, k;, choose o, € G, such that



The Normal Basic Theorem 73

oy, =7 (1 <i<n). Then o> 17, x .-+ x 7,, where ¢ = o, - - - o,. Thus,
the homomorphism is surjective. And if o is in the kernel, o(x) = x for
xek,U---Uk,, hence for xek, - -k, = K. Thus, the kernel is 1 and the
homomorphism is injective. []

3.3.12 Corollary. Let K/k be an algebraic Galois extension and
K =k, -k, (disjoint product over k). Then k, Q- - - Q k, and K are k-
isomorphic by the k-linear mapping f sending x, ® - - - Q@ x,, to x1 - - * X,,.

Proof. 1If K|k is finite dimensional, then
Kk =G1=(G:D):---(Gy:1)) = (ky:k)--- (k2 k)= k; @ - R k,):k

and f, being surjective, is therefore a k-isomorphism. Since for each i,
ki = Ues, ki where S, is the set of subfields k; of k; containing k such that
ki/k is finite dimensional Galois, fis a k-isomorphism in general. []

3.4 The Normal Basis Theorem

In the preceding section, we proved that for a finite dimensional Galois
extension Kk, K:k = Aut, K:1. We show here that such a K has a basis over
k of the form ¢,(y), . . ., ,(y) where Aut, K = {o,, ..., 0,} and y is a suitable
element of K. Such a basis is called a normal basis of K|k.

If K is finite, the proof goes as follows. The group Aut, K then has the
form Aut, K ={e 7, 7% ..., 7" 1} where n= K:k (see 1.5.7). Since
€, 7,..., 7"~ 1 are linearly independent (since distinct), the linear transforma-
tion = of the n-dimensional vector space K over k is cyclic. Thus, y, 7(y), ...,
7~1(y) is a basis for K over k for some y.

We now let K be any field, &k a subfield of K.

3.4.1 Theorem. Let k be infinite and let o4, ..., o, be distinct elements
of Aut, K. Then there exists y € K such that Det (o, 20,(»)) # 0.

Proof. Choose z € K such that o > o(z) is injective on
T={o"to|1<j<m

(see 2.2.10). Let f(X) be a polynomial in K[X] such that f(e~(2)) = 8.,
(Kronecker delta) for o € T where € is the identity of G (see E.1.30). Letting
o(f)(X) denote the polynomial o(f(X)), we then have o(f)(z) = &, for
o = 0;"10; € T. That is, (o;,"*0,())2) = 8¢,0,-1q, = 8. It follows that the
polynomial Det ((o; 10;)(f)(X)) does not vanish at z, hence is nonzero.
Since k is infinite, there consequently exists x € k such that

Det ((0;~e,)(f)(x)) # 0
(see E.1.41). But (o; e )(f)(x) = 0;"*o;(f(x)) since x k. Taking y = f(x),
we then have Det (6;7*0;(»)) # 0. [

3.4.2 Theorem. Let k be infinite or K/k algebraic. Let oy,..., o, be
distinct elements of Aut, K. Then there exists y € K such that o,(), . . ., o,(3)
are linearly independent over k.
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Proof. If kis infinite, take y as in the preceding theorem. A k-dependence
of 6,(3), ..., ox(¥) does not exist, for it would lead to a dependence of the
columns of (¢;~0,()). Suppose next that K/k is algebraic and & finite. Let S
be a finite subset of K such that oy, . . ., 0,5 are distinct. Since the orbits of
Aut,, K are finite, we may take S to be Aut, K-stable. Let &’ = k(S). Then £’
is finite and oy, ..., o, are distinct elements of Aut, k’. But &k’ has a
normal basis () (o € Aut, k'), as we showed earlier in the section. Thus,
a1(9), . . ., a,(y) are linearly independent over k for some ye K. []

3.4.3 Theorem (Normal Basis Theorem). Let K/k be a finite dimen-
sional Galois extension. Let Aut, K = {0y, ..., 6,}. Then a1(y), ..., o.() is
a basis for K over k for some y € K.

Proof. Choose y as in the preceding theorem. Then o,(y), ..., o.(p) is a
basis for K over k sincen = K:k. [I

3.5 Algebraic independence of homomorphisms

Let k be a field and let K and L be extension fields of k. Let L’ be any
extension field of L. Let o4, . . ., o, be distinct k.-homomorphisms from K into
L and let f(Xy,..., X,) be an element of the ring L'[ X3, ..., X,] of poly-
nomials in commuting indeterminants X, ..., X, with coefficients in L’ (see
E.0.57).

3.5.1 Definition. f(oy,...,a,) is the mapping from K to L’ defined by
S(@1 - 0)(x) = f(o1(x), . . ., 0x(x)) for x € K.

For M = (m,;) an element of the ring M,(L) of n x n matrices with
entriesin L', welet XM = Ywhere X = (X1,..., X,), Y = (¥y,..., ¥;)and
Y; = >, X;m,;. We adopt the notation f(X) = f(X1,..-, X,), and let
f(Y) be the element of L'[Xj, . . ., X,] obtained from f(X) by specializing X;
to Y, for 1 <i < n. We then let ¥f(X) = f(XM). We have “Vf(X) =
FX(MN)) = f(XM)N) = Y(XM) = “(f(X)) and *Vf(X) = *(*f (X))
for M, Ne M,(L’). Letting I be the identity element of M,(L), we have
1(X) = f(X).

Assume next that k is infinite. By 3.1.3, there exist elements ay, ..., a, € K
such that the matrix M = (o,(a;) is nonsingular. For x,,..., x, €k, let
x = Sy x4 Then o,(x) = 37y x05(a;) (1 < j < n) and (01(%), . . ., o(X))
= (X1, ..., X,)M, s0 that f(a:(X), . . ., ox(x)) = Mf (X1, ..., Xn).

3.5.2 Lemma. Let k be an infinite field, L’ a field extension of %,
f(Xy, ..., X,)an element of L'[Xj, . .., X,]. Then if f(xy, .. ., x,) = 0 for all
xl,..-,xnek,f(Xl,..., Xn) = 0.

Proof. The proof'is by induction on »n and follows from E.1.41 if n = 1.
Next, let # > 1 and suppose that f(x,, ..., x,) = Oforall x;,..., x, €k. Let
F(X1, .. X)) = Zia(Xas - . ., Xo)X;' and consider f(X,) = f(X1, Xz, - - - Xn)s
@ = afxs, . .., X,) Where x,, ..., x, are fixed elements of k. Then f(xy) =
S, X' and f(x;) = 0 for all x, € k. By the case n = 1, we have f(X;) = 0,
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and @; = O for all i. Thus, a;(x,, ..., x,) = O for ali iand all x,,..., x, €k.
By the induction hypothesis, a;,(Xa, ..., X,) = O for all i. Thus,

f(Xy,..., X)) =0. 0

3.5.3 Theorem. Let k be an infinite field, and let K and L be extension
fields of k and L’ an extension field of L. Let a4, . . ., o, be distinct k-homo-
morphisms from K to L. Then for f(Xi,..., X;)eL'[Xi,..., X,], the
function f (o4, . . ., o,) is 0 if and only if the polynomial f(X;, ..., X,)is 0.

Proof. One direction is clear. For the other, suppose that the function
f(oy,...,0,) is 0. Taking a;,...,a, and M as above, we then have 0 =
fle(x), ..., 0n(x)) = ¥f(xy,..., x,) for all x;,...,x,€K But then
Mf(Xy, ..., Xp) =0, by 3.5.2. Since M is non-singular, we then have
f(Xl’ ces Xp) = (M_IM)f(Xl’ cos Xp) = M—l(Mf(Xb sy Xn)) = M—I(O) =0

The property of the k-homomorphisms o, .. ., o, described in the above
theorem is referred to as the algebraic independence of o4, . . ., o, for k infinite.

3.6 Norm and trace

Let k be a field, K a finite dimensional field extension of k¥ and k,j, an
algebraic closure of k containing K. Let oy, . .., o, be the distinct k-homo-
morphisms from K into ke and note that oyyy,,,, s O ksep AT€ the distinct
k-homomorphisms from k., into ka; (see 2.2.13). For x € K, the conjugates
of x over k relative to K are oy(x), ..., o,(x). If 0 € G = Aut, K™ where
Krorm is the normal closure of K over k in k4, then o permutes the o4, . . ., oy,
in the sense that {¢o0oy,...,000,} = {04,..., 0.}, sO that o permutes the
conjugates o,(x), ..., on(x) of x. Consequently, []T o;(x) and X7 oy(x) are
elements of (K "“"“)G If K|k is separable, then K2°"™/k is Galois and (K “°“m)G =
k, so that T ]T o;(x) and DT o;(x) are elements of k.

3.6.1 Definition. Ny, and Tryg, are the mappings from K to ku,
defined by Ng,(x) = [ 17 0/(x*") and Tre(x) = 27 oi(x™) for x € K where
= (K:k);qaq. For x € K, N (x) and Trx,, are the norm and trace of x.

3.6.2 Proposition. Ny, is a multiplication preserving mapping from K
to k such that Ng,(x) = x¥* for x € k,q and Try, is an addition preserving
mapping from K to k such that Trg;(x) = (K:k)x for x € kp,4.

Proof. Since x*° € ke, (see 2.2.18) and oy, - - -5 Omi,,, are the distinct
k-homomorphisms from kg, to ka, (see 2.2.13), Ny (x) and Try,(x) arein k
by the remarks at the beginning of this section. Clearly Ny, Trg preserve
multiplication and addition respectively. Since m = (K:k)sep (see 2.2.17), we
have K:k = mp® (see 2.2.18) and consequently Ny (x) = x¥*, Tre(x) =
(K:k)x for x €kpaq. [

3.6.3 Proposition. Let K> k' > k. Then Ny o Ngy = Ngy and
Trk'/k ° TrK/k' - TrK/k.

s
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Proof. Note that the above equations make sense, since Ny, and
Trg; map Kto k', Ny, and Try., map k' to k and Ny, and Try, map K to k.
Now let oy, . .., 0, be the distinct k'-homomorphisms from K to k,, and
0%, ..., 0y the distinct k-homomorphisms from k' to ku,. Then the
0%, ..., 0m can be extended to k-homomorphisms from K™°™ to k,, (see
1.3.5and 2.3.7) also denoted a1, . . ., oy, and the mm’ distinct ojo; (1 < i < m,
1 < j < m’) are all of the distinct k-homomorphisms from K to ky, (see
E.3.4). Letting p* = (K:k)paq and p® = (k':k)paq, We have p®*° = (K:k),nq
(see 2.2.21). Now

W) = N ([T o) = [Toi( ([T o))

=[] 1 oex**") = Ngu(x)  forxe K.
1 1
Similarly,

Trip(Trgpe(x)) = i";((i “i(qu)) pb) = Trgpx) for xe K. [

3.7 Galois cohomology

Let G be a group and let H be a G-group (see 0.3). We first regard G and
H as discrete groups, that is, as groups with the discrete topology. Let eg, ey
be the identity elements of G, H respectively. An element & of H determines a
function ok from G to H, defined by oh(c) = o(h~Y)h and called the co-
boundary (or 1-coboundary) determined by /. One verifies easily that dh(or) =
a(0h(7))0h(o) for o, 7€ G. A function f from G to H such that f(o7) =
a(f(7))f (o) for o, 7 € G is called a cocycle (or 1-cocycle) from G to H. The set
of coboundaries ok (h € H) is denoted BX(G, H), the set of cocycles of G in H
denoted Z*(G, H). We have ZY(G, H) © BXG, H). Two cocycles f, f' are
cohomologous if there exists h € H such that f(o) = o(h~)f'(e)h for o € G.
The relation “fis cohomologous to ' on Z'(G, H) is an equivalence rela-
tion and BY(G, H) is the equivalence class containing e = dey. The set of
equivalence classes in Z(G, H) is denoted HYG, H). If ZX(G, H) =
BY(G, H), there is only one equivalence class and we say that H(G, H) = 1.
If H is Abelian, then Z(G, H) together with the product ff'(c) = f(o)f (o)
(¢ € G) is an Abelian group with subgroup B*(G, H) and

HYG, H) = ZXG, H)/BX(G, H).

We now determine Z1(G, H) for G a cyclic group of order n and generator

o. For this, let f be a function from H to H and let f(¢) = h. We claim that
feZY(G, H) if and only if f(c'*?) = o(f(¢"))f (o) for i > 0. The necessity of
the condition is obvious. Now let f(¢**') = o(f(c*)f(c)) for i = 0. Then
f(°) = ey, since f(e°*?) = o(f(a°)f (). We now show by induction on i
that f(c'e’) = o'(f(c”))f (") for all j > 0. Note first that f(c%’) = f(o’) =
(f()f(0°). Next,

f(o'*1a’) = f(od'a?) = o(f(o'c"))f(0) = o(d(f(e)f (D) f(0)
= " I(f(@)o(f (@) f(0) = o+ (f (o)) f(0*+?)
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verifies the assertion for i + 1 under the assumption of the assertion for i.
Thus, fe ZX(G, H). Now the condition that fe ZY(G, H) is that

f@) =h
(@) = olhyh

f@*) = a"(h)- - o(h)h

Since h = f(o) = f(c™*'), a necessary condition for the above equations is
that N2 = e, where N,h = o™(h) - - - o(h). The condition N,k = ey is also
sufficient, since it insures that f(o™*') = o™(h) - - - o(h) is well defined for
m > 0. For if m > 0, it insures that f(e™*1*™) = o™(c™(h) - - - a(h))a™(h) - - -
o(W)h = o™(h) - - - a(h)h = f(c™*'). We have now proved the following.

3.7.1 Proposition. * Let G be cyclic of order n and generator o and let
Ny(h) = o™h)---o(h). Then Z*(G, H) is mapped bijectively to {he H |
No(h) = ex} by f>f(0). [

We now let G be a finite subgroup of Aut K, K a field. We let K* be the
multiplicative group of units of K and K+ the group K with addition, and
regard K* and K* as G-groups. Our main objective is to show that
HY(G,K*) =1and HYG,K*) = 1.

3.7.2 Theorem. For G a finite subgroup of Aut K, H'(G, K*) = 1.
Proof. LletfeZ(G,K¥)and y € K. For x = X, f(?)7(»), we have

o(x) = D o(f(Der(y) = D f(o7)f(0)  ar(y)

€@ €@

= 1@ 3 fenorn) = @
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Taking y € K such that x # O (see 3.1.3), we have f(¢) = o(x~"x for s € G,

and fe BY(G, K¥*). Thus, HY(G,K*) =1. [

3.7.3 Theorem. For G a finite subgroup of Aut K, we have
HYG,K*) = 1. A

Proof. letfeZ(G,K*)and ye K. For x = >, f(7)7(y), we have
o(x) = 2 o(f(MNer(y) = D (flor) — f(o)or(y).

1€G oTEG

Thus ‘
x = o(x) = () D or(y) = £(0) D, 7(»)-

o1e@ €@
Taking y € K such that z = >ec 7() is nonzero (see 3.1.3), we have z € K¢
and f(o) = xz7! —o(xz"') for oeG. Thus, feB(G,K*) and
HYG,K*) =1 10

We now derive *“ Hilbert’s Theorem 90 as corollary to 3.7.2. This theorem
is important in the study of cyclic extensions. We also derive a corollary
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analogous to 3.7.3. For this, we let N (x) = [ ¢'(x) and Tr,(x) = 3% o'(x)
where x€ K, o€ Aut K and o has order n (see 3.6). Note that N,(x),
Tr(x) e K* = {y e K| a(y) = y}.

3.7.4 Corollary. Let o be an element of Aut K of finite order and let
y € K such that N,(y) = 1. Then y = o(x~)x for some x € K.

Proof. Let G be the cyclic group generated by o. By 3.7.1, there exists
f€ZYG, K*) such that f(¢) = y. Since HY(G, K*) = 1, there exists x € K*
such that y = f(0) = o(x")x. 0

3.7.5 Corollary. Let o be an element of Aut K of finite order and let
v € K such that Tr,(y) = 0. Then y = x — o(x) for some x € K.

Proof. Let G be the cyclic group generated by o. By 3.7.1, there exists
f€ZYG, K*) such that f(c) = y. Since H*(G, K*) = 1, there/exists xeK*
such that y = f(o) = x — o(x). 1[I N

We now describe a simple application of Hilbert’s Theorem 90. This
application is proved directly later (see 3.9.3). '

3.7.6 Proposition. Let o € Aut K have order d. Let y € K, o(y) = y and
y* = 1. Then there exists x € K such that o(x) = xy.

Proof. Since Ny(y~ 1) =1,y ! = o(x Yxforsome xe K. [
The additive analogue of 3.7.6 is the following (see 3.9.4).

3.7.7 Proposition. Let K have characteristic p # 0 and let o Aut K
have order p. Then there exists x € K such that o(x) = x + 1.

Proof. SinceTr,(—1) = p(—1) =0, —1 = x — o(x)forsome xe K. [

We now let G be a group together with its Krull Topology and let H be
a G-group with the discrete topology. We assume that G acts continuously on
H, that is, that the G-orbits in H are finite (see 0.4.5).

3.7.8 Definition. For G and H as above, Z(G, H)%°" is the set of con-
tinuous cocycles from G to H.

3.7.9 Proposition. Let fbe a cocycle from G to H. Then the following
conditions are equivalent.

1. fis continuous;

2. Kernel f = {0 € G | f(o) is the identity of H} is a subgroup of G of
finite index;

3. Image f'is finite.

Proof. One easily sees that Kernel f is a subgroup of G and that the
coset o Kernel fis the set of preimages of /(o) under ffor o € G. Now Kernel f
is open if and only if Kernel f'is of finite index, by 0.4.3, and it is now im-
mediate that 1-3 are equivalent. []

3.7.10 Corollary. Let fand f’ be cohomologous cocycles from G to H.
Then f'is continuous if f* is continuous.
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Proof. Let f(o) = a(h™*)f"(o)h for all o € G. Since the orbit of £~ under
G is finite, Image f'is finite if Image /' is finite. [

3.7.11 Corollary. Every coboundary is continuous.

Proof. Every coboundary is cohomologous to the trivial cocycle, which
is continuous. [

3.7.12 Definition. H (G, H)**** is the set of equivalence classes in
ZYG, Hye=t, If ZX(G, H)**™* = BYG, H), we say that HY(G, H)**" = 1. If
H is Abelian, we regard Z*(G, H)*®** as a group and H(G, H)*** as
ZY(G, H)*=*/BXG, H).

We now generalize 3.7.2. It is instructive to invoke the Galois Descent
Theorem 3.2.5 for this.

3.7.13 Theorem. Let G be an algebraic subgroup of Aut K. Then
HI(G, K*)cont = 1.

Proof. Let f be a continuous cocycle from G to K*. Introduce the G-
product o-x = f(o)"'o(x) on the K-space K (see E.3.9). The G-orbits under
the new action o x are finite since the G-orbits under the old action o(x) are
finite. It therefore follows from 3.2.5 that there exists a nonzero x € K such
that o-x = x for all ¢ € G. But then f(¢) " *o(x) = x and f(o) = o(x)x~?* for
o e€G. Thus, f = ox~! and Z*(G, H)*** = BG, H). [

We also have the corresponding generalization of 3.7.3.

3.7.14 Theorem. Let G be an algebraic subgroup of Aut K. Then
HY(G, K*)* = 1,

Proof. Let fbe a continuous cocycle from G to K* and let H = Kernel f.
Then H is open and therefore contains a normal subgroup N of finite index.
We let f(eN) = f(o) define the-cocycle f from G = G/N to K*. Regarding G
as a finite subgroup of Aut K", we know from 3.7.3 that there exists x € KV
such that /() = x — &(x) for 5 € G. But then f(¢) = x — o(x) for o € G and
f=éx. 1

3.8 Cyclotomic extensions

Let k be a field of exponent characteristic p, k,;, an algebraic closure of k
and » > 1 an integer.

3.8.1 Definition. An element x of ky,, is a primitive nth root of unity if
the cyclic group {x) generated by x is of order n. The nth roots of unity of k 1,
are the elements of the group E, = {x € k¢|x" = 1}.

Note that k,;, has a primitive #th root of unit only if # and p are relatively
prime, since 1 is the only root of X? — 1 in k.

3.8.2 Definition. The splitting field for x® — 1 over k is called the
cyclotomic extension of X™ — 1 of k.
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Note that the cyclotomic extensions of X™ — 1 and X" — 1 of k are the
same.

3.8.3 Proposition. Let n and p be relatively prime and let K be the
cyclotomic extension of X™ — 1 of k. Then K contains ¢(n) primitive nth
roots of unity, where ¢(n) is the number of positive integers less than » which
are relatively prime to n (see E.0.47). If x is any primitive nth root of unity in
K, then K = k(x). Finally, the extension K/k is Galois, Aut, K is Abelian
(cyclic if n is prime) and Aut, K is isomorphic to a subgroup of the group
Z} of units of the ring of integers modulo 7.

Proof. The set E, of roots of X* — 1 in K has n distinct elements, since
X" — 1 and its derivative nX "~ * are relatively prime. Thus, E, is a subgroup
of K* of order n. By 1.5.5, E, is cyclic. A generator x for E, is now a primitive
nth root of unity (see 3.8.1). The nth roots of unity are therefore 1, x, . . ., x" 1.
Among these, x™ is primitive if and only if m and n are relatively prime. Thus,
the number of primitive nth roots of unity in K is (n). Since {x> = E,, we
have K = k(x). Now K/k is normal, as a splitting field. Since X" — 1 has n
distinct roots, x is separable over k. Thus, K/k is Galois. For o € Aut, K, we
have o(x) = x™ where 1 < m, < n. The mapping o+ m, + nZ is an
injective homomorphism from Aut, K to the group Z} of units of Z,. Thus,
Aut, K is isomorphic to a subgroup of Z;. In particular, Aut, K is Abelian
(cyclic if » is prime). []

3.8.4 Theorem. Let n and p be relatively prime and let X be a cyclo-
tomic extension of X* — 1 of k. Then Aut,, K is isomorphic to Z if and only
if T1¢™ (X — x;) is irreducible over k, where Xy, . . ., X, are the primitive
nth roots of unity in K.

Proof. Note that {xy;..., Xom) is stable under G = Aut, K, so that
T1¢™ (X — x,) € K[X]¢ = KS[X] = k[X]. Since K = k(x,), [T¢™ (X — x;)
is therefore irreducible if and only if its degree ¢(n) equals K: k, that is, if and
only if Z*:1 = Aut, K:1. Now apply the preceding proposition.

If n=p — 1, then Z¥:1 = p — 1 and Z, is the cyclotomic extension of
X?-1 — 1 over Z,. Thus, [ 2™ (X — x;) is not irreducible over the prime
field in this case. However, if the prime field is £ = Q, [T¢™ (X — x;) is
irreducible (see E.3.18). Thus, we have the following corollary. []

3.8.5 Corollary. Let K be a cyclotomic extension of X" — 1 of Q.
Then Autg K is isomorphic to Z3. [

The above results relate the Galois group Aut, K of a cyclotomic exten-
sion K of X™ — 1 of k to the group Z. The structure of the latter group is
easy to determine. In factif n = p,° - - - p,,°n (prime decomposition of n), then
Z¥ is isomorphic to [ i, Z}e (outer direct product) and Z,e has order
o(p®) = pf~Y(p; — 1) and is cyclic for p; # 2. If p; = 2, then Z} . has a
cyclic direct factor of index 2 (except, of course, when e; = 1). (See E.0.45 and
E.3.19.)
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3.9 Cyclic extensions

Let Kbe an algebraic extension of a field k of exponent characteristic p and
let ka, be an algebraic closure of k containing K. We begin with some
simple general observations about K/k when K/k is Abelian. (See 2.4.8.)

3.9.1 Proposition. An Abelian extension K/k is Galois.

Proof. Let K/k be Abelian. Then K/k is separable and Aut, K®°™ js
Abelian. Now K*r™/k is Galois (see 2.3.15) and every subgroup of
Aut, K*™™ is normal. Thus, K/k is Galois by the Galois Correspondence
Theorem. [J

3.9.2 Proposition. Let K/k be finite dimensional and Abelian. Then
K =k, -k, (disjoint product over k) where, for each i, k; is a cyclic exten-
sion of k of prime power degree p,* = k;:k.

Proof. The group G = Aut, K is a finite Abelian group and G =
G, - - G, (direct product over G) where, for each i, G, is cyclic of prime
power order pt = G:1. Now apply 3.3.11. [

The above proposition reduces the problem of determining the finite
dimensional Abelian extensions of k to that of determining the cyclic exten-
sions of k of prime power degree. In general, this is a difficult problem.
However, we do describe the cyclic extensions K of k of prime power degree n
in the case that k contains the group E, of nth roots of 1 in k,,.. The cases
n = p®and n = ¢° (g prime, g # p) are treated separately. The following two
propositions, treated less concretely in 3.7, are fundamental to the discussion.

3.9.3 Proposition. Let o€ Aut K have order d. Let y € K, o(y) = y and
y* = 1. Then there exists x € K such that o(x) = xy.

Proof. Choose w € K such that x = >¢_, y '¢'(w) is nonzero, by 3.1.3.
Then o(x) = Jf_, y~lot*i(w) = xy. [

3.9.4 Proposition. Let o € Aut K have order p and assume that p > 1.
Then there exists x € K such that o(x) = x + 1.

4

Proof. Choose w € K such that z = > o'(w) is nonzero. Then o(z) = z
and 1 = 3% d'(wz~1). Now let x = —>7? ic'(wz~*). Then

o(x) = — i gt (wz™1) = }::aul(wz—l) _ Zj(i + Dot (wz™1)

1
1+ x 0

The next theorem treats the case of cyclic extensions K of degree »
relatively prime to p of a field k containing E,.

3.9.5 Theorem. Let n be relatively prime to p and suppose that k
contains the group E, of nth roots of unity in k »,.. Then K/k is cyclic of degree
dividing » if and only if K = k(x) for some x € K such that x" e k. The
minimum polynomial of any x € K with x" e k is £,(X) = X¢ — x% where d
divides n.
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Proof. Let x € K and x™ € k. Then the set of roots of X" — x" in ky;g is
Roots (X" — x™) = {xa | a € E™}, so Roots (X" — x") < k(x) and k(x) is the
splitting field for X" — x™ over k. Since X" — x™ has n distinct roots, x is
separable and k(x)/k is Galois. We have an injective homomorphism from
Aut,, k(x) to E, sending each ¢ € Aut, k(x) to a, € E, where o(x) = xa,, since
Aut, k(x) stabilizes Roots (X™ — x"). Since E, is cyclic of order n, Aut, k(x)
is therefore cyclic of order dividing n. Letting o be a generator of Aut, k(x)
and d its order, we have o(x) = xa, and o(x?) = x%a,)* = x? Thus, x? is
fixed by Aut, k(x) and x? € k. Thus, X¢ — x¢is a polynomial in k[ X] vanish-
ing at x of degree d = k(x):k and f,.(X) = X% — x? Suppose conversely,
that K/k is cyclic of degree d dividing n. Let o be a generator for Aut, K, so
that o has order d. Let a € E, < k be a primitive dth root of 1 and take x € K
such that o(x) = xa (see 3.9.3). Then f,(X) has d distinct roots x, o(x) =
xa, ..., 0% (x) = xa®~* and, consequently, K = k(x). Moreover, o(x?%) =
(e(x))? = (xa)? = x%?® = x?so that x? €k, hence x" e k. []

3.9.6 Corollary. Let n be any positive integer. Suppose that k contains
the group E, of nth roots of unity of k,,, and that x € kg, and x" € k. Then
k(x) is cyclic.

Proof. Letn = mp® where m and p are relatively prime, and let y = x*°.
Then y™ €k, so that k(y)/k is cyclic, by 3.9.5. But k(x) = k(y) since x is
separable (see 2.2.5). []

We finally turn to the case of cyclic extensions K of degree n = p® of a
field k. The case e = 1 is particularly simple; and it is instructive to discuss it
before considering the general case.

3.9.7 Theorem. Letp > 1. Then K/k is cyclic of degree p if and only if
K = k(x) for some x € K such that x* — x € k and x ¢ k. The minimum poly-
nomial £,(X) of any x € K with x» — xek and x ¢k is f,(X) = X? — X —
x? — x).

Proof. Letx? — x e kand x ¢ k. The set of roots of X? — X — (x* — x)
in ky is Roots(X? = X — (x* — x)) ={x + i|iemn,), where =, =
{0,1,..., p — 1} is the prime field of k, so that Roots (X? — X — (x* — x))
< k(x) and k(x) is the splitting field of X? — X — (x* — x) over k. Since
X? — X — (x — x) has distinct roots, x is separable over k£ and k(x)/k is
Galois. We have an injective homomorphism from Aut, k(x) to =, sending
each o € Aut, k(x) to i, € m, where o(x) = x + i,, since Aut, k(x) stabilizes
Roots (X? — X — (x* — x)). Since =, is cyclic of order p, Aut, k(x) is there-
fore cyclic of order p. Thus, k(x)/k is cyclic of degree p and f(X) = X? —
X — (x* — x). Suppose conversely that K/k is cyclic of degree p. Let o be a
generator for Aut, K, so that o has order p. Take x € K such that o(x) =
x + 1 (see 3.9.4). Then o(x?) = o(x)* = (x + 1)’ = x* + land o(x* — x) =
(x* + 1) — (x + 1) = x» — x, so that x* — x € k. But x ¢k, since o(x) =
x + 1. Thus, k(x)/k is cyclic of degree p, by the first part of the proof. But
then K = k(x), since K © k(x) and K:k = p. 1[I
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The characterization of cyclic extension K/k of degree dividigg n was
established, under the assumption that & contain a multiplicative cyclic group
E, of order n, by analyzing conditions for the existence of an injective homo-
morphism from Aut, K to E,. We now characterize the cyclic extensions K|k
of degree p" by analyzing conditions for the existence of an injective homo-
morphism from Aut, K to an additive cyclic group =, of order p°. Precisely
this was done in 3.9.7 in the case e = 1, =, then being the prime field of k.
For e > 1, we pass from k and its prime field =, to the ring W,k of Witt
vectors and its prime subring .

We begin by describing W, K and properties of W,K analogous to proper-
ties of K. The more technical parts of the discussion are given in Appendix W,
where a complete discussion of Witt vectors is given.

3.9.8 Definition. W.K = {x = (x,,...,%,-1)|x;eKfor0 <i<e— 1}

We give W, K the operations of addition and multiplication constructed
in W.2 and note that W,K is then a commutative ring with zero element
0=1(0,0,...,0) and identity element 1 = (1,0, ..., 0) (see W.9). It is clear
that for any subfield k of K, Wk is a subring of W,K. Lettingn = 1 + --- + 1
(n times) so that nx = x + --- + x (n times) for n a positive integer and
xe WK, we have px = (0, xo?, ..., x5_5) for x = (xo, X1,..., Xe_y) (see
W.17). One then easily shows that the additive order of 1 is p°. Since the
subring W,m, has p° elements and contains the additive cyclic group with
generator 1, W, is generated as additive group by 1. Thus, W,m, is the
prime subring of W.k and W,n, is additively cyclic. We let m,e = W,m,.

For any homomorphism ¢ from K to K, we let

a(x) = x7 = (o(X0), o(x1), . . ., 0(x, 1))

forx = (xo, x1, ..., X, ;). Letting m(a) = a” for a € K, we have, in particular,
m(x) = x* = (Xo® x,7, ..., x{_;). Since addition and multiplication are
defined by polynomials with coefficients in =, (see W.14) and since o(a) = a
for a e m,, o is a homomorphism from W,K to W,K. In particular, = is a
homomorphism from W,K to WK whose subring of fixed points is the prime
subring 7,e = W,m,. If ¢ is a k-automorphism of K, the induced ¢ on W,K is
an automorphism leaving fixed the elements of the subring W,k.

The mapping on W.(K) defined by V(x) = (0, xo, ..., x._5) for x =
(%o, ..., X,-1) preserves addition (see W.5). Moreover, Vi(x) Vi(y) =
Vi+i(x*y*") for x, y € W,K (see W.17). In particular, V(x)° = 0 for all x.
Letting y = (yo, ..., Ye-1), we have y* = 01if y, = 0, for we can then express
y as y = V(x). We claim that y is a unit if y, # 0. To see this, let z =
(»07%,0,...,0) and note that the zeroth coordinate of 1 — yz is 0 so that
(1 — y2)* = 0. Thus, (y2) 3§23 (1 — y2)! = 1 and y is a unit.

3.9.9 Proposition. Let o € Aut K have finite order d. Then there exists
y € WK such that 3% oi(y) = —1.

Proof. Choose w, e K such that z, = >%o'(w,) is nonzero. Letting
w = (wo, 0, ..., 0), the zeroth coordinate of z = 3% o'(w) is z,, so that z is a
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unit. Since o(z) = z, we therefore have 1 = 3¢ o'(wz~!) and we may take

= —wz~t (]
For f < e and ye WK, we let y, = V*/(). In particular, 1; = (0, . <
1,0,...,0) where 1 is the (e-f)th entry of 1,. Note that 1, = 1 and lo = 0
Note also that the additive order of 1, is p’ and that p’y; = Oforall y € W K.

3.9.10 Proposition. Let o< Aut K have finite order p/ dividing p°.
Then there exists x € W, K such that o(x) = x + 1,.

Proof. Choose y such that 3., o'(y) = —1. Applying V*’, we have

of

1= vei( 5 00) = 5 v = 8 0mion = § o

i=1 i=1

Letting x = >7L, io'(y;), we then have
2
o(x) = Z it 1(yy) = Z (i + Dot (y) — > o'*}(yy)
i=1 i=1

o,
= Z Jo'(y) — 2’1 dyp =x+ 1,

=1
since py; = 0. [
The following related theorem is needed in the next section..

3.9.11 Theorem. let G be an algebraic subgroup of Aut K. Then
HY(G, (W.K)*)™ = 1.

Proof. Tt is understood here that (W,K)* is the additive group of W.K
with the discrete topology. Since G acts continuously on K, it acts continu-
ously on (W.K)* (see 0.4.5). Now let f be a continuous cocycle from G to
(W,K)*. Suppose first that G is finite and take y = (3,0, ..., 0) € W, K. The
zeroth coordinate of z = J.cq () is Zo = Dsec (Vo) and we take y, such
that z, is nonzero. Then z is a unit, by the discussion preceding 3.9.9. Letting
x = Swaf(D)(»), we have x — o(x) = f(0)z, as in 3.7.7, so that f(o) =
xz~! — o(xz"1) for o € G. Now drop the assumption that G be finite. Since f
is continuous, Kernel fis open and G has a normal subgroup N of finite index
such that N = Kernel f. Let f(oN) = f(o) define a cocycle f from G = G/N
to (W,K)*. Since we can regard G as a finite subgroup of Aut K", we know
that there exists x € WKV such that f(5) = x — &(x) for 7€ G. But then
f(o) = x —o(x)foree Gand f = ox. [

We now can describe the cyclic extensions of degree dividing p®. The
following theorem provides this description. In the theorem, the condition
that K/k be separable algebraic can be dropped, as we note at the end of this
section. We use the notation k(x) for k(xo, . . ., X.—1) When x = (Xo - - - X, -1)

3.9.12 Theorem. A (separable) algebraic extension K/k is cyclic of
degree p’ dividing pe if and only if K = k(x) for some x € WK such that
x" — xe Wuk.
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Proof. Let the expression x € W, K be such that x» — x € W,K. The set
Roots (X* — X — (x” — x)) of roots of X" — X — (x* — x) in W,ky, is
{x + i| i e mpe} where mpe = W,m,, since () — y) — (x® — x) = 0 if and only
if (y — x)» = y — x thatis, if and only if y — x € W,m,. Since x» —x € Wk,
Roots (X* — X — (x* — x)) is stable under Aut, k,y. Thus, k(x) is stable
under Aut,, kg, for k(x) contains the coordinates of the roots x + i (i € m,e) of
Roots (X* — X — (x™ — x)). Since k(x)/k is separable algebraic, k(x)/k is
therefore Galois. We have an injective homomorphism from Aut,, k(x) to e
sending each o € Aut, k(x) to i, € m,» where o(x) = x + i,. Since =, is cyclic
of order p¢, Aut, k(x) is therefore cyclic of order p’ dividing p°. Thus,
k(x)/k is cyclic of degree p’ dividing p°. Suppose, conversely, that K/k is
cyclic of degree p’ dividing p®. Let o be a generator for Aut, K, so that ¢ has
order p’. Take x € W, K such that o(x) = x + 1, (see 3.9.10). Then o(x*) =
ox) =(x+1)"=x"+ Liando(x" — x) = (x"+ 1;) — (x + 1,) = x" — x,
so that x™ — x € W, k. Thus, k(x)/k is cyclic of degree p” dividing p¢, by the
first part of the proof. Since 1, has additive order p’, 0|, has order p’. Thus,
pr=p'and K = k(x). 0]

The above theorem together with the following proposition determine the
cyclic extensions k(x) of k of degree dividing p°. In the proposition, we use the
notation (= — 1)x = x* — x.

3.9.13 Proposition. For each a € Wk, there exists x € W,(,¢k spe)) Such
such that (= — 1)x = a.

Proof. We prove by induction on e that there exists x = (xo, ..., X,_1)
such that (m — 1)(x) = a and x;€kg,, for 0 <i<e—1. If e=1, we
simply take x, € kgep, such that x,* — x, = a (see 3.9.7). Next, let e > 1 and
again choose x, € kg, such that x,” — x, = a,. Then (ao, ay, ..., a,_,) —
(m — 1)(x,0,...,0) = (0, by,...,b,_,) for suitable b, € kg,,. Letting k' =
k(by, ..., b,_1), we can find, by induction, y;, ..., y._; € ksep = kgep Such
1:hat(bl’ .. "be—l) = (77 - l)(yls .. -:ye—l) = (ylp’ . -ayg—l) - (J71, .. "ye—-l)'
But then (0, by,...,6.-1) = (0, 3% .. ., 32-) — (0, Y1, .. s Yeor) = (w — 1)
X (0, y1,..., y.-1) (see W.11). We now have (a,, a,...,a.,_,) = (m — 1) x
((%6,0,...,0) + (0, ¥1, ... Ye-1) = (7 — 1)(x0, X1, ..., %X._,) for suitable
X €kgep (1 < i< e— 1). Thus, (7 — 1)(x) = a, for x = (xp,..., Xe—1) aS
asserted. Since the extension k(x)/k is separable, it is cyclic of degree dividing
P°, by 3.9.12. Thus, k(x) © yekape and x € W.(,tkape). [

It is appropriate at this point to note that the part of the hypothesis in
3.9.12 that K/k be separable algebraic can be dropped. For this condition is
used only to insure that k(x)/k is separable algebraic. However, that k(x)/k
is separable algebraic follows from the condition that x* — x € W.k. For,
by 3.9.13, there exists y = (Jo, ..., ¥e—1) such that y* — y = x* — x and
such that y,ekg,, for 0 <i <e— 1. But then (y — x)* = y — x and
y—xe€Wem, Thus, x =y — (y.— x) € Wokg,, and k(x)/k is separable
algebraic.
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3.10 Abelian extensions

In 3.9, we noted that an Abelian extension K of k of finite degree has the
form K = k, - - - k,, (disjoint product over k), where the extension k;/k is
cyclic of prime power degree p;t for 1 < i < m (see 3.9.2). Thus, the problem
of determining the structure of an Abelian extension K of k of finite degree n
reduces to the problem of determining the structure of the cyclic extensions of
k of prime power degree dividing . In the case that k contains the multipli-
cative group E, of nth roots of unity in k,,, and K/k has separable exponent
dividing n, the solution has been given (see 3.9.5, 3.9.12). Without the assump-
tion that k contain E,, however, the problem is quite difficult.

In this section, we retain the assumption that k contain E, and describe a
bijective correspondence between the set of subfields K of k4, containing k
such that K/k is a finite dimensional Abelian extension of separable exponent
dividing » and the set of finite subgroups of the character group y,(G) of G =
Aut,, (zkape). We then determine y,(G).

We begin by noting that the set of subfields K of k,, containing k such
that K/k is Abelian of separable exponent dividing n is the set of subfields of
Kave containing k (see 2.4.11). Next, let G = Aut,, ykape and consider the
group x.(G) = Hom (G, Z,) of homomorphisms from G to the additive
group of Z,. If G is finite, G and y,(G) are dual in the sense that for o € G,
f(0) = 0 for all fe x,(G) if and only if o is the identity element of G (see
E.3.20). Let H' = {fexu(G) | f(H) = {0}} for H= G and S* ={ce G|
f(0) = 0for fe S}for S = x,(G). Note that for H a subgroup of G, the group
G/H has exponent dividing » and that x,(G/H) and H* can be identified by
letting any f'e H* be regarded also as the function on G/H mapping ¢H to
f(o) for o€ G. If H is a subgroup of G of finite index, then H" is a finite
subgroup of x,(G) (see E.3.7), G/H and x,(G/H) = H* are dual and, conse-
quently, H = (HY)". Note, conversely, that for S a finite subgroup of
xn(G), S* is a subgroup of G of finite index and S = (SH* (see E.3.20).
Thus, H +—> H* maps the set of subgroups of G of finite index bijectively to
the set of finite subgroups of x,(G). From this and the Galois Correspondence
Theorem we have the following proposition.

3.10.1 Proposition. The set of subfields K of ki, containing k such that
K/k is a finite dimensional Abelian extension of separable exponent dividing
n is mapped bijectively to the set of finite subgroups of x,(G) by the mapping
sending K to (Gy)* where G denotes the subgroup

{o€ G| o(x) = xfor x € K}. -

We now assume that k& contain the multiplicative group E, of nth roots of
unity in ku and let n = mp® where m and p are relatively prime. Then
E, = E, and E,, is isomorphic to the additive group of Z,,. Consequently, the
additive group of Z, is isomorphic to the direct product E, x Z of E, and
the additive group of Z,e. Thus, x,(G) = Hom (G, Z,) is isomorphic to the
direct product Hom (G, E,;) x Hom (G, Z,) (see E.3.20). Thus, to determine
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xn(G), it suffices to determine Hom (G, E,,) and Hom (G, Z,¢). This is now
done in 3.10.2 and 3.10.3.

3.10.2 Theorem (Kummer). Let k contain the multiplicative group
E, of nth roots of unity in k4, and let n = mp® where m and p are relatively
prime. Then Hom (G, E,) and k*/k*™ are canonically isomorphic, where k*™
denotes the subgroup {x™ | x € k*} of the multiplicative group k* of units of k.

Proof. For a € k*, we define f, e Hom (G, E,) as follows. Let x be an
mth root of a in ,kaue (see 3.9.5). For o € G, let f,(0) = o(x)x~*. Since any
two such x differ multiplicatively by an element of E,, < k, f,(o) is indepen-
dent of the choice of x. Since x™ = a €k, f,(o) is an element of E,,. Since
fuo) € E, < k, we have o(x)x~17(x)x~! = ox7(xX)x"*x~* = (or)(x)x~* for
o, 7€ G, so that f, € Hom (G, E,). Finally, f, = f, if ak*™ = bk*™. For let
b = ac™ with cek* and let y be an mth root of b in ,kpzpy. Then y™ =
ac™ = x™c™ = (xc)™, so that y~'xce E, < k and y~'x ek. Thus, fi(c) =
a(y)y~t = a(x)x~! = f (o) for o € G and f, = f,. We have now shown that
a+— f, induces a mapping from k*/k*™ to Hom (G, E,). This mapping is a
homomorphism since, taking notation as before, f,(c) f,(¢) = a(x)x~*a(y)y~*
=o(xy)(xy)~! = f,.(0) for all o € G. (Here, xy is an mth root of ab since x and
y are mth roots of a and b respectively.) The homomorphism is injective on
k*[k*", for if f,(G) = 1, then 1 = f,(0) = o(x)x~* for o€ G, and x € k* so
that ¢ = x™ € k*™. Finally, we show that the homomorphism is surjective.
Thus, let f€ Hom (G, E,). Then the kernel of fis of finite index in G so that
fis continuous from G to k.. By 3.7.13, there consequently exists x € ,kape
such that f(¢) = o(x)x~* for o € G. Now f(o) € E,,, so that 1 = (f(o))™ =
o(x™x~™ for ¢ € G. Thus, x"e€k* and f = f, where a = x™. Thus, the
homomorphism is surjective. []

3.10.3 Theorem (Artin-Schreier-Witt). The additive groups Hom
(G, Z¢) and W, k/(m — 1)(W,k) are canonically isomorphic, where (7 — 1)(W,k)
is the subgroup {x* — x | x € Wk} of the additive group of W k.

Proof. Recall that the prime field of k is denoted =, and that the prime
subring of Wk is mye = W, m, and is isomorphic to Z,. For ae W, k, we
define f, e Hom (G, m,) as follows. Let x be an element of W,(,kape) such
that x® — x = a (see 3.9.13). For o € G, let f,(0) = o(x) — x. Since any two
X1, X5 such that x,* — x; = a = x," — X, satisfy (xo — x1)" = x; — x;, we
have x; — x; € W,(m,). Thus, o(x; — x;) = x; — x; and o(xy) — x, =
a(x,) — x;. It follows that f (o) is independent of the choice of x. Since
x™ — x = a€ Wk, we have n(f,(0)) = #(o(x) — X) = a(x™) — x* = o(x + a) —
(x + @) = o(x) — x = f,(0), so that f,(c) € Wm, = 7. Since f (o) € mpe =
W(=,), we have f, € Hom (G, m,), for fy(o7) = (o7)(x) — x = o(7(x)) — x =
o(x + fo(7)) — x = o(x) — x + fo(7) = fu(0) + fu(7) for o, 7€ G. Finally,
fo =1ty if the cosets a + (w — DW,k =b+ (m — )W,k. For let b =
a + (@ — 1)c with ce Wk and let y € W (,kapa) satisfy y* — y = b. Then
(m—Dy=a+ (@ — 1)c=(m— Dx + (7 — 1), so that

m—-Dx+c—p)=0
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and x + ¢ — y€ Wem, € W,k. Consequently, x — ye W,k and fi(o) =
() — y = o(x) — x = fy(o) for all ¢ €@, so that f, = f,. We now have
shown that a — f;, induces a mapping from W.k/(m — 1)W k to Hom (G, =.).
This mapping is a homomorphism, since, taking notation as before,
J0) + file) = o(x) — x + 0(3) — ¥y = o(x + 3) — (X + ¥) = farol0) for
all oG (Here, (x+ )" —(x+y)=a+b since x* —x=a and
y® — y = b). The homomorphism is injective on Wok/(m — 1)W,k, for if
fo(G) = {0}, then O = f,(¢) = o(x) — x for c€G and xe W,k, so that
a = (m — 1)(x) e (# — 1)W k. Finally, we show that the homomorphism is
surjective. Thus, let f€ Hom (G, m,). Then Kernel f is a subgroup of G of
finite index, so that f'is continuous from G to W,.(,kaw.) (see 0.4.3). By 3.9.11,
there exists x € W.(ykape) such that f(o) = o(x) — x for o€ G. Now
f(@) empe, sothat 0 = (7 — 1) f(0) = o((m — 1)(x)) — (# — 1)(x) for c € G.
Thus, (= — 1)(x) € W,k and f = f, where a = (= — 1)(x). We have now
shown that the homomorphism is also surjective. []

3.11 Solvable extensions

The objective of the present section is to describe the finite dimensional
solvable extensions in terms of extensions of the form k(x)/k where x™ € k for
some m or x* — x € k. Throughout the section, K is a finite dimensional
extension of a field k of exponent characteristic p, k), is an algebraic closure
of k containing K and K™ is the normal closure of K in k,;, over k.

We begin with an elementary property of solvable extensions.

3.11.1 Proposition. Let K/k be a Galois extension and let £’ be a sub-
field of K containing k such that k’/k is Galois. Then K/k is solvable if and
only if K/k' and k’'/k are solvable.

Proof. Let G = Aut, K and G' = Aut;. K. Then G’ is a normal sub-
group of G so that G is solvable if and only if G’ and G/G’ are solvable (see
E.0.76). Thus, K/k is solvable if and only if K/k" and k’[k are solvable, for the
extensions K/k, K/k', k'[k are Galois with Galois groups G, G’, G/G’
respectively. [

The following definition is taken from the theory of equations (see 3.12).

3.11.2 Definition. The extension K/k is solvable by radicals if there
exists a tower k = K, < - - - = K, of subfields-of k,;, such that K < K, and
K, = K;_1(x;)) fot some x;eK; such that x™ e K, , for some m; or
X — X(GIQ_]_ (1 <i< r).

Note that K/k is solvable by radicals if and only if k.., /k is solvable by
radicals. For the extension Kjk.,, is radical and therefore has a tower
ksp = Ko = - -- < K, = K such that K; = K;_,(x;) for some x; € K| such that
xPekK (1 < i<r) (see 2.2.18). Thus, to determine all extensions Kk
which are solvable by radicals, it suffices to determine all separable exten-
sions K/k which are solvable by radicals. This is done in the following
theorem.
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3.11.3 Theorem. Let K/k be a finite dimensional separable extension.
Then K/k is solvable if and only if K/k is solvable by radicals.

Proof. Let K[k be solvable and let G = Aut, K™, Let the order of G
be n = mp® where m and p are relatively prime. Taking x to be a primitive
mth root of unity in k,,, the extension B = k(x) is cyclic (see 3.8.4). Let
K' = K*™™B and G" = Aut, K'. Then K'[k is Galois and solvable (see
2.4.2,2.4.9). Now G’ has a tower G' = Gy @ --- > G, = 1 such that G} is a
normal subgroup of G;_; and Gj_,/Gj is cyclic of prime order dividing »n
(1 i< r) (see 0.2). Letting K/ = K'S, we have a tower k = Kj < --- <
K; = K’ such that the extensions Kj/K]_; are cyclic of prime degree dividing
n(l <i<r—1). Since the K;_, contain the group E, of nth roots of
unity of k., we have K/ = K;_,(x,) where x™ e K;_, for some m; or
x? —xeKi_; (1 <i<r) (see 3.9.5 3.9.7). Thus, K/k is solvable by
radicals.

Suppose, conversely, that K/k is solvable by radicals, and take a tower
k=K,< . -< K, such that K < K, and K; = K;_,(x;) where x™ e K;_,
for some m; or x;» — x,€ K/_; (1 < i < r). Since K/k is finite dimensional,
the set {o(K) | o € Aut, ka\} Of conjugates of K over k is finite (see 1.4.10).
Let K’ be the composite K’ = K, - - - Kk’ where K, . . ., K, are the distinct
conjugates of K over k and k' = k(x) where x is a primitive mth root of unity
and m is defined by n = mp® where m = m, - - - m, and m and p are relatively
prime. The extensions K - - - K,/k and k’[k are normal and separable, hence
Galois. Thus, K'/k’ is Galois. Moreover, K’ has a tower k' = K < R
K{ = K’ where K] = Kj. (y)and y" e Kj_ory? — y,;€eK;_; (1 <j < 1),
for we can take the y,’s to be conjugates of the x;’s such that for each j,
y; = o(x;) and K;_, = o(K;_,) for some i and o. Letting G; = Aut K'/K], we
have a tower Aut,. K' = Gy > Gy > ---> G; = 1. But the extensions
Kj/K;_, are cyclic since K;_, contains E, (1 < j < t) (see 3.9.6 and 3.9.7).
Thus, G; is a normal subgroup of G;_, and G;_,/G; is cyclic (1 <j < t).
_The group Aut,. K’ is therefore solvable. Thus, K'/k’ is solvable and one

sees\ from the following diagram that K™r™/k is solvable, so that K/k is
solvable:

Kl
/ \
Knorm k/

~N

Knorm N k’

k
More specifically, K*°r™/(K™r™ N k') is solvable since K'/k’ is solvable (see

2.4.4). And (K™™ N k')[k is cyclic since k'[k is cyclic (see 3.8.4). But then
K™k is solvable, by 3.11.1, and K/k is solvable (see 2.4.8). []
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3.12 Theory of equations

Let k be a field of characteristic O or characteristic p > 1. Let f(x) be an
irreducible polynomial with coefficients in k, k(f) a splitting field for f(x) over
k, G(f) the automorphism group Aut, k(f) and R(f) = {s1,..., Sn} the set
of roots of f(x) in k(f). We say that f(x) is solvable by radicals if there exists a
tower k = k, < - - - < K, of subfields of k,,; and elements x; € K; (1 < i < r)
such that k(f) < K, and, for each i with 1 < i <r, K; = K;_,(x;) where
where x,™ € K,_, for some m; or x;* — x; € K;_,. If k is of characteristic 0,
then f(x) is solvable by radicals when it is possible to eventually reach a full
set R(f) of roots of f(x) *“by successively adjoining m;th roots x; of previously
constructed elements to k, k(x,), k(x1)(x,), etc.” It is clear from 3.11 that the
equation f(x) = 0 is solvable by radicals if and only if G(f) is solvable.

Since R(f) is G(f)-stable, we may regard R(f) as a G(f)-space. The corre-
sponding homomorphism p from G(f) to the group S(R(f)) of permutations
of R(f) (bijective mappings from R(f) to R(f)) is given by p(o) = 0|z
(0 € G), and p is injective since k(f) = k(R(f)).

The group S, = S({L, ..., n}) of permutations of {l,..., n}, called the
symmetric group on n letters, is solvable if n < 4 and is not solvable if n > 4
(see E.0.84, E.0.85). It follows that if f(x) has degree at most 4, then the
equation f(x) = 0 is solvable by radicals. For G(f) is then isomorphic to a
subgroup of the solvable group S,.

We next show that for any prime number ¢, there exists an irreducible
polynomial f(x) of degree ¢ with coefficients in the field Q of rational numbers
such that S, is isomorphic to G(f). Since any finite group is isomorphic to a
subgroup of S, for a sufficiently large prime number ¢ (see 0.3.5), it follows
that for any finite group G, there exists an irreducible polynomial f(x) with
coefficients in Q such that G is isomorphic to a subgroup of the Galois group
G(f) of the Galois extension Q(f)/Q. In particular, it follows that equations
f(x) = 0 of degree greater than 4 are solvable by radicals only under very
special circumstances.

Thus, let g be a prime number. Let r, be a nonreal complex number such
that r; + 7, and r,7, are integers, and let r, = 7;. Let rs,..., r, be distinct
nonzero integers. Then fy(x) = []{(x — r;) is a polynomial with integer
coefficients having ¢ distinct roots ry, 7, rs, . . ., o, the first two of which are
nonreal complex conjugates of each other and the remaining ¢ — 2 of which
are real. By slightly changing the constant term of f;(x), we now obtain an
irreducible polynomial f(x) of degree ¢ withrational coefficients having ¢
distinct roots sy, g, 83, . - ., 8, differing only slightly from the ry, ro, rs, . . ., g,
the first two of which are nonreal complex conjugates of each other and the
remaining g — 2 of which are real. To do this, choose ¢ > 0 such that the
neighborhoods N, = {zeC| |z — r;| < € are pairwise disjoint for 1 <
i < g. Choose a prime number ¢, with 1/g, sufficiently small that f(x) =
fo(x) + 1/g, has roots s, 55, 53, - . ., 5; such that s;e N; for 1 < i < g. The
roots s, Sa, S3, - - ., 84 are distinct, and f(x) has only ¢ roots since its degree is
g. Moreover, the nonreal roots of f(x) occur in conjugate pairs. Thus, s; is
nonreal, s, = §, and s, . . ., 5, are real. Finally, f(x) is irreducible over Q.
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For f(x) = (q0f(x) + 1)/go and the polynomial g,f(x) + 1 is irreducible by
Eisentein’s criteria (see E.0.50).

Finally, we show that S, is isomorphic to G(f), where f(x) is the poly-
nomial just constructed. What we must show is that the injective homo-
morphism p: G(f) — S(R(f)) is surjective. Since f(x) is irreducible over Q
and s, is a root of f(x), we have Q(s;): @ = g. Thus, ¢ divides the order of
G(f). Since g is prime, it follows that G(f) has an element o of order q (see
0.3.1). Since p(c) has order g and is a permutation of the g elements of
R(f), p(c) must be a g-cycle (see 0. 3) and the distinct elements of R(f)
are sy, o(s1), 9%(s1), . . ., 02~ *(s;). Since complex conjugation preserves k(f),
G must also have a transposmon 7 such that =(s;) = 55, +(s3) = 5, and
7(s;) = 5; for 3 < i < ¢. But then the entire symmetric group S(R(f)) on
R(f) = {51, 82, 83, . .., 8.} is generated by p(c) and p(7), by 0.3.5. It follows
that p is surjective from G(f) to S(R(f)), so that p is an isomorphism from
G(f) to the symmetric group S(R(f)) on g elements.

We have now proved the following.

3.12.1 Theorem (Galois). An irreducible polynomial f(x) is solvable
by radicals if and only if the Galois group G(j) of a splitting field for f(x) is
solvable.

~ 3.12.2 Theorem. For any prime number g, there exists an irreducible
polynomial f(x) € Q[x] such that the Galois group G(f) of a splitting field
for f(x) is isomorphic to the symmetric group S, on ¢ elements.

3.13.2 Corollary. For any finite group G, there exists an irreducible
polynomial f(x) € Q[x] such that G is isomorphic to a subgroup of the
Galois group G(f) of a splitting field for f(x).

E.3_ Exercises to Chapter 3

E.3.1. Leto,,..., o, be distinct homomorphisms from a field K to a field L.
Using the L-independence of the o,, show that there exist a,,...,a, € Ksuch
that the n x n matrix (o,(,)) is nonsingular.

E.3.2. Let G be a subgroup of Aut X, k a subfield of K¢, V a vector space
over k. Show that there is a G-product on the K-space Vy = K Ry V such
that V3 > 1 ® V. Show that 1 ® Vis a k-form of Vx.

E.3.3. Let K/k be a finite dimensional extension and k' a subfield of K con-
taining k. Let o’ be a homomorphism from the normal closure K™ of K
over k to kg (algebraic closure of k containing K*°*™) and let = be a homo-
morphism from K to kg, such that 7|, = ¢'[,.. Show that = = ¢’c for some
homomorphism o from K to k,y,. (Hint: Pass from o, = to elements of
Aut, Krorm),

E.3.4 (Symmetric Functions). Let k[X;, ..., X,] be the polynomial ring in
n variables over k and let G be the symmetric group on {X, . .., X,}. Regard
“Gasa subgroup of Aut,, K where K is the field of quotients k(Xj, . . . X,) of
k[Xi, ..., X,]. Show that the set K¢ = {fe K | o(f) = f for all oeG} is
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K¢ = k(fy,...,f.) wherefy, ..., f, are the elementary symmetric polynomials
in X;,..., X,.
E.3.5 (Kronecker). Let f(X),g(X) be irreducible elements of k[X] and
let K be an extension field of k containing roots x, y of f(X) and g(X)
respectively. Let f(X) = fi(X) - - - fu(X) and g(X) = g,(X) - - - g.(X) be the
decompositions of £(X) and g(X) as product of irreducible elements of k(y)
and k(x) respectively. Show that m = n and, upon rearranging the indices,
Deg f(x) Deg g:(x) = Deg g(x) Deg fi(x) for all i.
E.3.6. Let K be the splitting field over @ of (X% — 2)(x® — 3). C
(a) Describe a normal basis for K over Q.
(b) Compute Ny q(x) and Trg,(x) for x = V2, x=vV3x=v2+ V3
x = V2V3.
E.3.7. Let z e C. Describe Nggz and Trgpz.

E.3.8. Let K be the splitting field of X2 + 2X + 2 over Q and let G =
{¢, o} be the Galois group of K/Q, e being the identity of G. (See E.1.10.)
(a) Show that f: G— K*, defined by f() =1 and f(o) = —1 is a
cocycle.
(b) Find a € K such that f'is the coboundary determined by a.
(c) Determine Ny g(a) and Trgq(a).

E.3.9. Show that o-x = f(0)~'o(x) defines a G-product on K as vector
space over K, for any field K, any group G of automorphisms of K and any
continuous cocycle f from G to K.

E.3.10. Let K/k be a finite dimensional Galois extension with Galois group
G. Let x € K and define f(0) = o(x~Y)x for 0 € G. Let o-v be defined for
v=(%X,..., X)) €K™ by o(¥) = (6:Xy,...,0:%,) and o-x; = f(0) " to(x)).
Show that o-v is a G-product on K* and determine (K™

E.3.11 (Regular Representation). Let K/k be a finite dimensional extension.
For x € K, let L,.: K — K be defined by L,(y) = xy for ye K.

(a) Show that L: K — End,, K is-an injective k-linear ring homomorphism
from K to the ring End, K of k-linear endomorphisms of K.

(b) Show that the minimum polynomial /(X)) of x over k is the same as
the minimum polynomial of L, as linear transformation of K as
vector space over k.

(c) Letting the characteristic polynomial of L, be a, + a; X +--- +
a1 X" '+ X", show that Trgu(x) = —a,-; and Ngu(x) =
(—1)"a,. (Hint: The roots of the characteristic polynomial are the
conjugates of x).

E.3.12 (Trace Form). Let k/k be a finite dimensional extension. Show that
the function Try,(xy) (x, y € K) is a bilinear form on K as vector space over k.
This bilinear form is called the trace form of K/k, and is nondegenerate if
K|k is separable. (See E.3.13.)

E.3.13 (Different and Discriminant). Let K/k be a finite dimensional
separable extension, choose x € K such that K = k(x) and let f(X) be the
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minimum polynomial of x over k. The discriminant Disc, K|k of Kjk with
respect to x is the discriminant of f(X). (See E.1.27.) The different Diff, K/k
of K/k with respect to x is f”(x).
(2) Show that Disc, K/k = (—1)® Ny, (Diff, K/k).
(b) Show that Disc, K/k = Det M where n = K:k and M is the n x n
matrix whose (i, j)th coefficient is Trg(x'~1x’~2) for 1 < i,j < n.
(¢) Show that the trace form of Kjk is nondegenerate. (Hint: Use part
(b))
E.3.14 (Cyclotomic Polynomials). Let xy,..., Xo, be the primitive nth
roots of unity in C and let f,(X) = [I¢™ (X — x,). Show that

(@) fu(X) e QLX];

b)) x*-1= [Lain fa(X);

© fulX) = é—[(—,};
din

d#n
J15 (Cy\:lotomic Polynomials). Using the recursion described in the pre-

ceding exercise, calculate f1(X), fo(X), f3(X), fu(X), fs(X), fo(X), fro(X).

yclotomic Polynomials). Let p be a prime number. Show that
So(X) = XP~1 + X?=2 4 ... + X + 1. Show that f,(X) is irreducible over

E.3.17 (Cyclotomic Polynomials). Show that f,(X) has integer coefficients.
(Hint: X* — 1 = [, fo(X) = fo(X)g(X) where g(X) € Z[X] by induction.
Write  X* — 1 = m(X)g(X) + r(X), where Degr(X) < Degg(X) and
m(X), r(X) € Z[X], and show that £,(X) = m(X)).
E.3.18 (Cyclotomic Polynomials). Show that f,(X) is irreducible over Q by
writing f,(X) = g(X)h(X) where g(X), h(X) € Z[X] and g(X) is monic and
irreducible (see 0.1.11 and E.0.39) and showing that fu(X) = g(X) as follows:
(a) for any prime p not dividing », the polynomials g(X), A(X) € Z,[X]
obtained from g(X), A(X) by reducing coefficients modulo p are
relatively prime; .
(b) for any root x of g(X) and for any element a(X) € Z[X] vanishing at
x?, g(X) divides a(X?);
(c) notation as above, g(X) divides a(X)?;
(d) therefore, A(X) does not vanish at x*;
() g(X) vanishes at x* for every root x of g(X) and every prime p not
dividing #; '
(f) therefore g(X) = f,(X).
E.3.19 (Structure of Z¥). Show that Z} is isomorphic to the direct product
of the Z3« where n = []; p;* and Z} is the multiplicative group of units of
Z,. For p a prime, show that the order of Z¥- is p°~%(p — 1). For p odd, show
that

(a) Z3e = HN (direct product) where H and N are subgroups of orders
p¢~'and p — 1 respectively;
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(b) there exists a positive integer s such that the elements s* + Zp°
(1 <i < p — 1)form a subgroup of Z}- of order p — 1 (choose r such
that r + Zp, ..., "~ + Zp are distinct and let s = r**77);

(c) N is cyclic (use part (b));

(d) show that if 0 < u < p® and w® =, 1 then u =1 + vp°~! where
0<v<p (show that u=,1 and u = 1 + vp’ + wp’*! for some
l1<f<e—1,0<v<p, O0<w; then show that u? =,,,,1 +
vp’ *1, using the Binomial Theorem, and that f must be e — 1);

(e) show that H contains at most p — 1 elements of order p (use part (d));

(f) show that H is cyclic (use part (¢) and the Decomposition Theorem
for Abelian groups);

(2) show that Z§- is cyclic (use parts (c) and (f)).

For p = 2, show that Z%e is cyclic for e = 1, 2 and show for e > 3 that

(h) Z%* has three distinct elements x of order 2 (consider the integers
—1,1 42871, —1 4 2¢71);

(i) Z% has order 2°~* and is not cyclic (use part (h));

(j) for any odd integer r, r2*” =, 1 (use part (i));

(k) 5%7° #, 1 (investigate the congruences of the form 5%°™° =, 1 for
e = 3,4,..., showing for each e that the maximal fis f = e — 1);

(I) Z%e is direct product of a cyclic subgroup of order 2¢~2 and a subgroup
of order 2 (use parts (i) and (k)).

Summarize the above, by describing the structure of Z¥.

E.3.20 (Duality for Abelian Groups). Let G be an Abelian group of ex-
ponent dividing n and let x,(G) be the Character Group Hom (G, Z,) of homo-
morphisms from G to Z, as group with addition. Let H* = {f € x,(G) |

f(H) = {0}} for H<= Gand S* = {o e G | f(o) = 0for fe S} for S = x.(G).

Show that

(a) x.(G) together with the multiplication f; f; defined by (f1/2)(0) =
f1(e) + f2(o) is a group of exponent dividing #;

(b) for any subgroup H of G, H is a subgroup of x,(G) and H* is mapped
isomorphically to x,(G/H), an element f of H* being mapped to the
function f’ on G/H defined by f'(cH) = f(o);

(c) if H is a subgroup of G of finite index, then H = H*L. (Hint: Use the
Basis Theorem for G/H.)

Show that the condition in (c) that H be of finite index can be dropped by
showing that x,(G)* = 1 as below and applying that to G/H:

(d) if Iis a subgroup of G and the exponents of G and I are equal, then
G = IN (direct) for some subgroup N (show first in the case
G:1I < oo, then consider “independent families” of finite subgroups
{N;} such that INn N = 1 where N is generated by the family {N;},
show that there exists a maximal family and maximal N and show
that G = IN);
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(e) every element g of G is contained in a finite subgroup I such that
G = IN (direct) for some subgroup N;
®) xaG) = 1.
Show that for any finite subgroup S of x,(G), then S = S**. Show that if
n =rs where r and s are relatively prime, then x,(G) is isomorphic to
Hom (G, Z,) x Hom (G, Z,) (direct).
E.3.21. Let K/k be a finite dimensional Galois extension and let f(X) be an
irreducible element of k[X]. Show that the irreducible factors of f(X) in
K[XY are all of the same degree.
E.3.22. Find a field K having subfields k,, k, such that K/k, is finite dimen-
sionakGalois for i = 1,2 and K:k; Nk, =
E.3.23. Howmanysubfieldsdoes the field of p" elements have ? Describe them.
E.3.24. Letg be a prime number and let K/k be a Galois extension of degree
g" (n = 1). Show that
(a) K has a subfield K, containing k such that K¢/k is a Galois extension
of degree g"~?;
(b) K has precisely one subfield K, containing k such that K,:k = ¢, and
the extension K, /k is Galois.
E.3.25. Let K/k be an Abelian Galois extension of degree 6. Show that
(a) K has precisely four subfields containing k;
(b) K = K;K; (internal tensor product over k) where K, and K; are
subfields of K containing & of degrees 2 and 3 over k respectively.
E.3.26. What is the discriminant of X™ — c¢? What is the resultant of
X™ —cand X" — d?
E.3.27. What is the discriminant of X®» — X — ¢? What is the resultant of
X? — X — cand X? — x — d? (Here, p is the characteristic.)
E.3.28. Letf(X) = X® — 3X + 1 € k[X]. Show that k(f)/k is cyclic.
E.3.29. Show for x, y € Z that x =7 y implies x? =s+1 y? forj > 1.
E.3.30. Show that for f(X) = X* + cX? + din Q[X], Q(f)/Q is solvable.
E.3.31. Describe an element f(X) of Q[X] of lowest degree such that the
extension Q(f)/Q is not solvable.
E.3.32. Determine what groups (up to isomorphism) occur as Galois groups
of polynomials of degree 1, 2 and 3, and of polynomials of the form X* +
cX? + d.
E.3.33. Suppose that the characteristic of k is not 2 and that f(X) is a
monic irreducible element of k[ X] such that the quadratic roots of the dis-
criminant of f(X) are in k. Show that G(f) consists of even permutations.
E.3.34. Find the discriminant of f(X) = X% 4+ 2X + 1 over Q. Then
determine G(f).
E.3.35. Describe polynomials f(X) € Q[X] whose Galois groups are iso-
morphic to:
(@ Z,
(®) Z,
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(d) the alternating group 4,. ¢
E.3.36. Determine whether the equation X® + 5X — 10 = 0 is solvable by
radials over Q.

E.3.37. Determine the Galois group of X® — 2 over Q.
E.3.38. Determine the Galois group of (X2 — 5)(X2 — 7) over Q.
E.3.39. Prove that not every algebraic subgroup of the automorphism group

Aut K of automorphisms of the field K = (Z,)a) is algebraic. (Hint: Con-
sider the Frobenius homomorphism.)

E.3.40. Describe an algebraic subgroup G of the automorphism group
Aut K of K = (Z,) e such that k' — G N Aut,. K is not a bijection from the
set F,, of subfields £’ of K containing k such that K/k’ is Galois to the set of
closed subgroups of G.

E.3.41. Let G and H be finite groups, let d be the greatest common de-
nominator of |G|, |H| and suppose that H is Abelian. Show that H(G, H)
has exponent dividing 4. (Hint: Let fe H(G, H). Show that if x =
[ Toec f(8), then f(g)!¢! = xg(x)~*. Show that !¢ and f¥! and therefore /¢
are cohomologous to the identity.)

E.3.42. Let G be afinite group of automorphisms of K and let Hom (G, K*),
Hom (G, K*) be the group of homomorphisms from G to K*, K* respec-
tively. Let A be the subgroup {x € K* | x®**¢ ¢ K¢ and g(x) 'x € K¢ for all
g € G} of K* and let k* = (K%*. Prove the following.
(a) Hom (G, K+) = ZXG, K*) and Hom (G, K*) = Z'(G, K*).
(b) Hom (G, K*) is isomorphic to A/k*.
(c) Gisisomorphic to Hom (G, K*) if and only if K* contains a primitive
Exp Gth root of unity.
(d) G is isomorphic to A/k* if and only if K* contains a primitive
Exp Gth root of unity.
(Here, Exp G is the exponent of G).

E.3.43 (Cartier). Let G be a finite group of automorphisms of K. Show that
HY(G,GL,K) = 1. (Hint: Let fe Z*G, GL,K) and let b: K" — K" be
defined by b(x) = >,cc f(g)8(x) (x € K™). Show that {b(x) | x € K"} spans K"
by showing that for u € K™* (dual space of K™) and w(b(ax)) = O for all

aeK,xeK" 0= J,qg@u(f(g)g(x)) for all a, x, hence 0 = u(f(g)g(x))
for all x, hence u = 0. Then show that b: K™ — K™ is surjective.)



4. Algebraic function fields @

In this chapter, we study the structure of field extensions K of k of the
form K = k(x,, ..., x,). Extensions K of k of this form are called finitely
generated extensions or algebraic function fields. We use the latter term here,
since the main theorems of this chapter are most naturally interpreted as
theorems about fields of functions associated with varieties.

In 4.1, we relate algebraic function fields to affine varieties, in order to
give the reader the proper geometric orientation for the chapter. In 4.2, we
briefly discuss algebraic function fields of transcendency degree 1. In 4.3, we
relate algebraic function fields K/k and their derivation algebras Der, K. We
introduce the notion of separability for an arbitrary extension K/k. And we
introduce the notion of p-basis for a field extension K/k and use it to show
that an algebraic function field K/k of transcendence degree d is separable if
and only if it is separably generated, and if and only if 4 is the dimension of
Der,, K over K.

4.1 Algebraic function fields and their geometrical interpretation

In this section, we briefly relate algebraic function fields to affine varieties
and to surfaces in affine space. This account is for motivational purposes and
is not used later in the book.

4.1.1 Definition. An algebraic function field over k is a field extension
K of k of the form K = k(x4, ..., x,).

We now introduce the notion of affine variety. Our definition is more
general than the classical definition of affine variety in that the classical affine
varieties are the separable affine varieties in the sense of 4.1.2 and 4.3.19.

4.1.2 Definition. An affine variety over k is the set V=
Speci k[xy, ..., x,] of k-linear ring homomorphisms from a subring
k[x4, ..., x,] of a field extension L of k into the algebraic closure k of k. The
algebraic function field of an affine variety V' = Specy, k[x1, . . ., x,] over k is
the algebraic function field K = k(x,, ..., x,) over k, and the ring of regular
JSunctions of V is the subring k[x,, ..., x,] of K. The dimension of an affine
variety V over k is the transcendence degree of its algebraic function field
over k.

Let ¥ be an affine variety over k& with algebraic function field K and ring
of regular functions k[x] = k[x,, ..., x,]. (Here we let x = {x,, ..., x,} for
notational convenience.) Each element fek[x] determines a function
f: V—k defined by f(v) = v(f) for ve V. By a fundamental theorem of
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algebraic geometry, the Hilbert Nullstellensatz, the set V = Specg k[x]
separates the points of k[x] (see E.4.1). It follows that the mapping f > fon
k[x] is injective. Thus, we can regard k[x] as a ring and k-space of functions
from V to k. The algebraic function field K of ¥V consists of the quotients
flg (fe k[x], g € k[x] — {0}). Since f]g can be regarded via fand g as a func-
tion on V, = {ve V| £() # 0}, the elements of K can be regarded as
“functions” from ¥ to k which are not everywhere defined. Thus, the termi-
nology “field of algebraic functions of ¥” and “ring of regular functions of
V> is justified.

We imbed ¥ into affine n-space k" (n-fold Cartesian product of k) by the
injective mapping from ¥ to k" sending v € ¥ to (£,(v), . . ., £,(v)) € k™. The
regular functions x, . . ., x, may be thought of as a set of coordinate functions
onV.Let X = {Xy,..., X,}and let kK[ X] be the ring of polynomials over k in
the n algebraically independent elements X;. Let I,(V) be the ideal of relations
L(V) = {fek[X]| f(x1,- .., x,) = O} in k[X], so that (V) is the kernel of
the homomorphism from k[X] to k[x] sending each f(X,..., x,) € k[X] to
f(x1, ..., xy) €k[x]. Then k[X]/I(V) is isomorphic to k[x]. Since k[x] is an
integral domain, I(¥) is a prime ideal.

4.1.3 Proposition. The image V = {(£1(v), ..., £.(»)) |v€ ¥V} of V in
k" is the surface V.= {(v1, ..., vy) €k™ | f(vs, . .., v,) = O for all fe L(V)} of
zeros in k" of the prime ideal I,(V).

Proof. Suppose first that (vy,...,v,) €k™ and f(vy, ..., v,) = 0 for all
fel (V). Then the k-linear homomorphism v from k[X] to k such that
v(X;) = v;for 1 < i < nvanishes on the ideal I(V), since v(f (X3, .. ., X3)) =
fW(XD),..., (X)) = f(vy,...,v,) = 0 for fe I(V). It follows that there is
a k-linear homomorphism from k[x] to k mapping x; to v, for 1 < i < n, so
that (vy, . . ., v,) € V. Suppose, conversely, that (vy, . . ., v,) € V. Since there is
a homomorphism from k[x] to kK mapping x; to v, for 1 < i < n, there exists
a homomorphism v from k[ X] to k which vanishes on I,(V) and maps X; to
p;for 1 < i < n. But then

f(vl, LR Un) = f(v(Xl)a ey v(Xn)) = v(.f(Xl, ety Xn)) = 0
for fe (V). Thus,
V={0v,...,o)€k"|fvs,...,v,) = 0 forall I(V)}. 0

4.1.4 Proposition. Let X = {X,,..., X,} and let k[X] be the ring of
polynomials in the » algebraically independent elements X;. Let I be a prime
ideal of K[X]. Then there exists an affine variety ¥ with ring of regular
functions k[x;, . . ., x,] such that ¥V = {(£,(¢), . . ., £,(v)) | v € V} is the surface
{1, ..., v) €k | f(vs,...,v,) =0 for all feI} of zeros in k™ of I and
I=1rL).

Proof. Note that k[X]/I is an integral domain consisting of all poly-
nomial expressions in Xy + I,..., X, + I over k. Let x; = X; + 1,...,
X, = X, + I. Then k[X]/I is the subring k[x, . . ., x,] of the field of quotients
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k(x1, - . ., x,) of k[ X]/I. Let ¥ be the affine variety with ring of regular functions
k(xy, ..., x,] and algebraic function field k(x,, ..., x,). Since K[X]/I =
k[x1, ..., x,), the elements of ¥ can be regarded as the k-linear homo-
morphisms v from k[X] to k£ which vanish on I, so that we may write

U(f(Xb seey Xn)) = f(v(Xl)’ QI v(Xn)) = f(v(xl)’ s v(xn))
= f(x‘l(v)a ERE) -’en(v))

for v e V. 1t follows that for fe I, f(vy,...,v,) = Ofor all (vy,...,v,)e¥V =
{(#®),..., %,v)) | ve V}. Suppose, conversely, that (v4,...,v,) €k" and
f(y,...,v,) = Oforall fel Letv: k[X] — k be the k-linear homomorphism
such that o(X;) = v;. Then for f(Xi,..., Xpel, v(f(Xi,..., Xp) =
f(vy,...,v,) =0.Thus,ve Vand (vy,..., v,) € V. We have now shown that
V is the surface of zeros in k* of I. Furthermore, we have

I={feklX]|fGrrs- -, %) = O} = L(V). 0

The above two propositions show that the affine varieties ¥ over k with
rings of regular functions k[x;, . . ., x,] having »n generators xy, ..., X, corre-
spond exactly to the surfaces of zeros in £ of prime ideals of the polynomial
ring k[X] in n algebraically independent elements X, ..., X,. Since it can be
shown that every surface {(v, ..., v,) € k" | fi(vy,...,v,) =0for1 < i <r}
of zeros in k™ of elements f,, . . ., f; € k[X] is a finite union of surfaces of zeros
of prime ideals of k[X], the affine varieties over k are the basic objects of
study of affine geometry (see E.4.2).

The algebraic function fields of two affine varieties V' = Specg k[x1, - - ., Xm]
and W = Spec; k[y1, ..., y.] over k are k-isomorphic if and only if the
associated surfaces ¥ in k™ and W in k" are birationally equivalent in the
sense of E.4.4.

4.2 Algebraic function fields of transcendency degree 1

We now prove an important theorem due to Liiroth on algebraic function
fields K/k of transcendency degree 1. Letting x be a transcendental element
of K, K/k(x) is algebraic. Liiroth’s Theorem states that every subfield k£’ of
k(x) properly containing k is of the form k' = k(y) for some transcendental
element y of K.

We begin with a few comments on the elements y of k(x) — k where x is
transcendental over k. Writing y = u(x)/v(x) where u(x) and »(x) have no
nonconstant common factor in k[x] and letting P(X) = yv(X) — u(X) in the
polynomial ring k(x)[X] in an indeterminant X over the field k(x), we have
P(x) = 0. The polynomial P(X) is nonzero, for if P(X) = 0 and u(X) =

b X% v(X) = 33 v; X7, then upon taking a nonzero v, we would have
0 = yv; — u; and y € k, a contradiction. It follows that x is algebraic over
k(y). Consequently, y is transcendental over k, for otherwise x would be
algebraic over k. Suppose that P(X) has a factorization P(X) = Q(X)R(X)
with Q(X), R(X) € k[y][X]. Since the degree of P(X) in y is 1, we can take the
degree of Q(X) in y to be 0 and the degree of R(X) in y to be 1. Since y is
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transcendental over k and u(X), v(X) have no nonconstant common factor in
k[X], it is impossible to write yo(X) — u(X) = Q(X)R(X) where Q(X) is a
nonconstant element of k[X] and R(X)e€k[y][X] (see E.0.24). Thus,
Q(X) € k and the only factorizations P(X) = Q(X)R(X) of P(X) in k[y][X]
are trivial. It follows from 0.1.11 that P(X) is an irreducible element of
k(»[X]. Since P(x) = 0, we have k(x):k(y) = m where m is the degree of
P(X)in X.

4.2.1 Theorem (Liiroth). Let x be transcendental over k and let k’ be
a subfield of k(x) properly containing k. Then k" = k(y) for some transcen-
dental element y over k.

Proof. We have seen that x is algebraic over k(y) and y is transcendental
over k for any y e k' — k. Consequently, x is algebraic over k’. Let f(X) be
the minimum polynomial of x over k', where f(X) e k'[X] < k(x)[X]. Let
f(X) = ¢f*(X) where ¢ € k(x) and where f*(X) is a primitive element of
k[x][X] (see 0.1.8). Let f(X) = >3 a(x)X? and f*(X) = 2§ bi(x)X*. Choose
i such that a(x) ¢k and set y = a(x). We claim that k' = k(y). Write
¥ = u(x)/v(x) where u(x) and v(x) have no nonconstant factor in k(x). Let m
be the degree of f*(X) in x (the maximum of the degrees of the b;(x)) and note
that Deg u(x) < m and Deg v(x) < m. Let P(X) = yv(X) — u(X) so that
P(X) is nonzero and P(x) = 0 as in the discussion preceding this theorem. It
follows that P(X) = Q(X)f(X) for some Q(X)ek’[X]. Now P(X) =
aP*(X), Q(X) = bQ*(X) and f(X) = ¢f*(X) where a = v(x), b is a suitable
element of k(x), ¢ is as before and where P*(X), OQ*(X), f*(X) are primitive
elements of k[x][X] (see E.1.21). Then P*(X) = dO*(X)f*(X) withd e k, by
0.1.9. Since the degree of the left hand side in x is at most m (recall that
Deg u(x) < m and Deg v(x) < m) and the degree of f*(X) in x is m, the degree
of P*(X) in x is m and the degree of 0*(X)in x is 0. Since Q*(X) is a factor of
P(X) contained in k[x], O*(X) € k by the discussion preceding this theorem.
It follows that d*f*(X) = P*(X) = u(x)p(X) — v(x)u(X) with d* € k. By the
symmetry in x and X, the degree m of /*(X) in x coincides with the degree n
of f*(X) in X. It is now clear that m = »n and the degree of P*(X) in X is n.
By the discussion preceding this theorem, k(x):k(y) is the degree of P(X) in
X. Thus, k(x):k(y) = n=Kk():k. Since k(x)=Fk(x)> k' > k(y), it
follows that &' = k(). [

4.3 Separably generated algebraic function fields

The derivation algebra Der, K of an algebraic function field K/k (see
4.3.1) is related to the spaces of tangents at the various points of an affine
variety V with algebraic function field X over k (see E.4.5). The classical
affine varieties are those affine varieties ¥ such that the dimension of V
coincides with the dimension of Der,, K over K. The purpose of this section is
to study the class of algebraic function fields corresponding to the classical
affine varieties. Throughout the section, p denotes the exponent characteristic
of K (see 1.1.4).



Separably generated algebraic function fields 101

We begin by discussing derivations. For this, let L be a field, K a subfield
of L and k a subfield of K.

4.3.1 Definition. A derivation from K to L over k is a k-linear mapping
D from K to L such that D(xy) = D(x)y + xD(y) for x, y € K. The set of
derivations from K to L over k is denoted Der, (K, L). We denote Der, (K, K)
by Der,, K. The elements of Der;, K are called derivations of K[k and Der, K is
the derivation algebra of K|k.

For D, E € Der, (K, L) and a € K, we define D + E and aD as mappings
from K to L by (D + E)b) = D(b) + E(b) and (aD)(b) = a(D(b)) for
b € K. One then easily shows that D + E and aD are elements of Der, (K, L)
and that Der,, (K, L) together with the addition D + E and scalar multiplica-
tion aD is a vector space over K. The k-linearity of an element D € Der, (K, L)
easily leads to the equation D(a) = 0 for a € k (see E.4.6).

4.3.2 Proposition. Let k' be a subfield of K containing k and suppose
that K/k' is a finite dimensional separable extension. Then each derivation D’
from k’ to L over k has a unique extension to a derivation D from Kto L
over k.

Proof. K = k'(s) for some s € K, by 2.2.14. Letting f(X) = 3§ a, X" be
the minimum polynomial of s over k', f'(s) # 0, by 2.1.2. Suppose that D is a
derivation from K to L over k and let D|,. = D’. Then we have

0 = D(f(s)) = i D(a;s') = i D(ay)s' + i ajist~1D(s)

= fP(s) + f'(9)D(s)

where f2(X) = 38 D'(a)X* and f'(X) = 23 aiX*. Thus, D(s) = —f"'(s)/
f'(s) is determined completely by D’ and D is the only derivation from K'to L
extending D. Conversely, let D’ be a derivation from &’ to L over k. Define
D(s) = —fP'(s)/f"(s) and then define

n—-1 n-1 n-1
D(; b,-s‘) = ; D(b)s' + Z byis*~1D(s)

for any by, ..., b,_, €k’. Then D is a k-linear mapping from K to L and
D|,» = D’. By the choice of D(s), one can show that in fact

D(i bis’) = i D(b)s* + Em: bis'*~* D(s)
0 0 0

for any integer m > 0 and by, . . ., b, € k. It then follows easily that D is a
derivation from K to L over k. [

4.3.3 Proposition. Let K|k be finite dimensional. Then Kk is separable
if and only if Der, K = {0}.
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Proof. Suppose first that K/k is separable and D e Der, K. Then
D(a) = 0 for all a e k. Thus, D and the zero derivation 0 of K/k extend the
zero derivation 0’ of k/k. By 4.3.2, we therefore have D = 0. Thus, Der, K =
{0}. Suppose next that K/k is not separable. Let &' be a maximal proper sub-
field of K containing kg.p. Since Kk, is radical (see 2.2.13), K/k’ is radical.
Lettingu € K — k', we have K © k'(u) 2 k'(w®) = k' (see 2.2.5). Thus, by the
maximality of k', we have K = k’(u) and u? e k’. Thus, 1,u,...,u""'is a
basis for K over k’. Let D be the k’-linear mapping from K to K such that
D) = iu'~* for 0 < i < p — 1. Using the ensuing fact that D(s) = 0 for
a k', one shows easily that D(u') = iu'~! for all i > 0 and therefore that D
is a nonzero derivation of K/k. Thus, K/k is not separable only if
Der, K # {0}. [0

In order to study the derivations of algebraic function fields which are not
finite dimensional, we now determine Der, K in the important case where
K = k(x,, ..., xg) and the x4, . . ., x, are algebraically independent. For this,
let 9/0x; be the derivation of k(xl, .. .5 X) defined by

f = Z €5, .. e,gxl . xded

for

f= Z Qoyoveg X150+ - - X8 € k[Xy, . . ., X4]
and by

8i,§—§8i —g—{;;—a-%g for f, g e k[xy, . . ., x4)
(We leave it to the reader to show that 8/9x; is well defined and is a deriva-
tion.) Note that 9/dx;(x;) = 8;,for 1 < i,j < d. It follows that the 8/0x,, . . .,
0/ox,; are linearly independent over k. For any D eDer, K, D and
>¢ D(x,)(0/0x,) are equal at each x; (1 < i < d), so that D = >¢ D(x;) 9/ox;.
Thus, 9/9x;, ..., 8/0x, is a basis for Der, K and Der, K:K = d.

4.3.4 Proposition. Let K/k be an algebraic function field. Then
Der, K = {0} if and only if K/k is finite dimensional and separable.

Proof. 1If K[k is finite dimensional and separable, then Der, K = {0} by
4.3.3. Suppose, conversely, that Der, K = {0}. We assert first that K/k has
transcendency degree 0. Assume, to the contrary, that x,, ..., x,(d > 1)isa
transcendency basis for K/k and let k' = k(x,, ..., x,). If K/k’ is not separ-
able, then Der, K # {0}, by 4.3.3, so that Der, K # {0}, a contradiction.
Thus, K/k' is separable. But then the derivation 8/0x, of k’'/k extends to a
derivation of K/k, by 4.3.2, so that Der, K # {0}, a contradiction. Thus, K/k
has transcendency degree 0. But then K/k is finite dimensional, and K/k is
separable by 4.3.3. []

If K/k is a field extension with p > 1, then each D e Der,, K vanishes on
K? = {x* | xe K}, since D(x?) = px*~*D(x) =0 for xe K. Thus, each
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D e Der,, K vanishes on k(K?). The key to the relationship between Der; K
and Kk is therefore the extension K/k(K?*).

4.3.5 Definition. A p-basis for an extension K/k is a subset S of X such
that K = k(K?)(S) and K # k(K?)(T) for T & S.

For algebraic function fields K/k, it is obvious that K/k has a p-basis and
that every p-basis of K/k is finite. It can in fact be shown that every extension
K/k has a p-basis (see E.4.7).

4.3.6 Proposition. Let S be a p-basis for an extension K/k. Then for
each s € S, there exists D, € Der, K such that Dy(¢) = 8, forallt € S.

Proof. let se€S. Then K=k'(s), K+# k' and s? €k’, where k' =
k(K?)(S — {s}). Thus, there exists a derivation D; of K/k’ such that Dy(s*) =~
is'~* for all i, as in the proof of 4.3.3. Clearly, Dy(s) = 1. And D(¢) = 0 for
teS —{s},since S — {s} < k'. [

4.3.7 Corollary. Let K[k be an algebraic function field and let p > 1.
Then for any p-basis S of K[k, the number of elements |S| of S is the dimen-
sion Der, K: K of Der,, K over K.

Proof. The set {D,|se S} is a basis for Der, K over K. For if De
Der, K, D and 5.5 D(s)D, are equal at each ¢ € .S and vanish on k(K?), so
that they are equal on K = k(K?)(S). And if D5 ¢;D; = 0 (c; € Kfors e §),
then 0 = S s ¢, Dy(t) = ¢, forallteS. []

4.3.8 Proposition. Let K[k be an algebraic function field with p > 1
and let S be a p-basis for K/k. Then K/k(S) is finite dimensional and separable.

Proof. 1t suffices, by 4.3.4, to show that Ders, K = {0}. Thus, let
D € Derys, K. Since D vanishes at each s € S and on k(K?), D vanishes on
K =k(K?)(S)and D=0. [

4.3.9 Definition. An algebraic function field K/k is separably generated
if K/k has a transcendency basis i, ...,y such that K/k(y,...,ys) is
separable. Such a transcendency basis is called a separating transcendency
basis for K|k.

Every algebraic function field K/k of exponent characteristic p = 1 is
separably generated, since every transcendency basis for such an extension
K]k is a separating transcendency basis for K/k.

4.3.10 Theorem. Let Kk be an algebraic function field and let the
transcendency degree of K/k be d. Then

1. Der, K:K > d;

2. Kk is separably generated if and only if Der, K = d;

3. if K/k is separably generated and p > 1, then the p-bases for K/k are
the separating transcendency bases for K/k.
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Proof. Suppose first that K/k is separably generated and let y4, ..., ¥, be
a separating transcendency basis for Kj/k. By 4.3.2, each of the derivations
0/oy; of k(yy, . . ., y4)/k can be extended to a derivation D; of K[k (1 < i < d).
Since D(y) = &, (1 <i,j <d), the D,,..., D; are linearly independent
over K. If D eDer, K, then D and >{ D(y,)D; are equal at each y; (1 <
i < d), hence are equal on k(ys, ..., yq). Since K/k(y,, . . ., yq) is separable, it
follows that D = >¢ D(y,)D, for D € Der, K, so that D, ..., D, is a basis
for Der, K and Der, K: K = d. Suppose conversely that Der, K: K = d. We
assert that K/k is separably generated. If p = 1, this is true. Thus, assume
that p > 1 and let S be a p-basis for K/k. Then K/k(S) is finite dimensional
and separable, by 4.3.8, and |S| = Der; K:K = d, by 4.3.7. It follows that S
is a separating transcendency basis for K/k and therefore that K/k is separably
generated. We have now proved (2).

For (3), suppose that K/k is separably generated and p > 1. If S'is a p-
basis for Kjk, then S is a separating transcendency basis for K/k as in the
proof of (2) above. Suppose conversely that S = {y, ..., ya} is a separating
transcendency basis for K/k. Then K/k(S) is a finite dimensional separable
extension, so that K = k(S)(K?), by 2.2.5. Thus, K = k(K?)(S) and S
contains a p-basis T for K/k. But then T is also a separating transcendency
basis for K/k, as noted above. Thus, S = T and S is a p-basis for K/k.

We finally prove (1). If p = 1, then K/ k is separably generated and
Der, K: K = d by (2). Let p > 1 and let S be a p-basis for K/k. Then K/k(S)
is a finite dimensional separable extension, by 4.3.8, and consequently
|S| = d. Thus, Der, K:K > d, by 4.3.7. [0

4.3.11 Theorem (MacLane). Let K = k(x,,...,x,) be a separably
generated algebraic function field. Then a separating transcendency basis
X, - . ., Xi, can be selected from the given set x;, . . ., x, of generators of K/k.

Proof. 1If p = 1, this is obvious. If p > 1, then x,,..., X, contains a
p-basis § = {x,,, ..., x;,} for K/k which, by 4.3.10, is a separating transcen-
dency basis for Kjk. []

4.3.12 Definition. Let L be an extension field of k and let k, and k, be
subrings of K containing k. The ring of linear combinations over k of the
products xy (x € k,, y € k) is denoted k,k,. Elements x,, ..., x, of k; are
said to be ky-linearly independent if for y,, ..., y, € ks, 2% x;3; = 0 implies
0=y, ==y, Ifevery set x4, .. ., x, of k-linearly independent elements
of k, are k,-linearly independent, then k, and k, are said to be linearly
disjoint over k.

We now relate the linear disjointness of subrings &, and k, of L containing
k to tensor products and give some equivalent conditions for linear disjoint-
ness. The reader is referred to Appendixes T and A4 for the details. For k; and
k. to be linearly disjoint over k, it is necessary and sufficient that k; ®; k.
and k;k, be isomorphic under the k-linear mapping from &, ®, k. to k.k,
mapping x ® y to xy for x e k; and y € k,. Consequently, k, and k, are
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linearly disjoint over k if and only if k, and k, are linearly disjoint over k.
Furthermore, k, and k, are linearly disjoint over k if and only if k, has a
basis x, (@ € A) such that for y, ek, (a€ A), S4cs X,y, = 0 implies that
Yo =0forallae A.

4.3.13 Definition. An extension K/k is separable if for any algebraically
closed field L containing K, Kand k? " = {x € L | x” € k} are linearly disjoint
over k. (If p = 1, every extension K/k is separable.)

The above definition of separability of an extension K/k coincides with
our earlier definition of separability for algebraic extensions, as we now show.
Suppose that K/k is an algebraic extension. We assert that K/k is separable in
the sense of 2.2.6 if and only if for any set x;, . . ., x,, of k-linearly independent
elements of K, the elements x,?,..., x,” are k-linearly independent. The
equivalence of the two definitions of separability is thus a consequence of
4.3.14 below. Suppose first that K/k is not separable and choose x € K such
that x is not separable over k. Then k(x) 2 k(x?), by 2.2.5. Letting d =
k(x):k, 1,x,..., x4 is a basis for k(x)/k. But the d elements 17, x?, ...,
(x4~1? of k(x*) are not k-linearly independent since k(x?):k < d. This
proves one direction of our assertion. For the other, suppose that K/k is
separable and let x,,..., x, be k-linearly independent elements of K. The
extension k(xy, ..., X,)/k is a finite dimensional separable extension, so that
there exists x such that k(x,, ..., x,) = k(x), by 2.2.14. Since k(x) = k(x")
(see 2.2.5), {x' |0 <i<d~— 1} and {(x?)'|0 < i < d — 1} are bases for
k(x) = k(x) over k, where d = k(x):k. Thus, k(x) has a basis y,, . . ., y; over
k such that y,?, ..., y,* is a basis for k(x) over k. Let z, . . ., z, be any basis
for k(x) over k. Upon writing the y,? in terms of the z,7, we see that z,°, . . ., z4°
spans k(x) over k and therefore is a basis for k(x) over k. In particular, if we
extend x;,..., X, to a basis x1,..., X,, Zp 41, - . ., Zg fOI k(X) OVer k, x,%, ...,
XqP, 28 ,1,. .., 24" is a basis for k(x) over k and the x,?, ..., x,” are k-linearly
independent, as asserted.

4.3.14 Proposition. An extension K/k is separable if and only if for any
set xy, . . ., X, of k-linearly independent elements of K, the elements x,?, . .. x,°
are k-linearly independent.

Proof. Let L be an algebraically closed field containing K. Suppose first
that x;,..., x, are k-linearly independent elements of K. Suppose that
>% ci(x;)? = 0 where the cy,. .., c, are elements of k. Choose y; € k? " such
that y» = ¢; (1 < i < n). Then

0= z::yi’xg” = (zn yixt)pa

so that 3% x;y, = 0. But then 0 = y; =-.-y,, sothat 0 = ¢; = --- = ¢,
and the elements x,%, ..., x,? are k-linearly independent. Suppose next that
K and k? " are not linearly disjoint over k and choose k-linearly independent
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1

elements x;, . .., x, and elements yy, ..., ¥, (not all zero) of k*~* such that
>t x;y; = 0. Then

0= (g xiyi)p = gxipyip = ?Qxfp

where ¢, = y,,...,c, = y,* (not all zero) are elements of k. Thus,
xi%, ..., x,F are not k-linearly independent. []

4.3.15 Proposition. Let K/k be purely transcendental. Then K/k is
separable.

Proof. Since any finite subset of K is contained in k(x,, ..., X;) where
X1,..., Xq are suitable algebraically independent elements of K over k, it
suffices to show that such a k(x;, ..., xs)/k is separable. Thus, let L be an
algebraically closed field containing k(x;, . . ., X4). Obviously, k(xy, ..., x4)
and k?~? are linearly disjoint over k if and only if k[x,, ..., x,] and k?"* are
linearly disjoint over k. The set of monomials M = x,° - - x,% | ¢, > 0 for
1 <i < d} form a k-basis for k[xy,..., xs] over k. Since the set M? =
{x? | x e M} is a subset of M, M? is a k-linearly independent set. It follows
as in the proof of 4.3.14 that M is a k? “*-linearly independent set. Since M is
a basis for k[xy, ..., x;] over k, it follows that k[x,, ..., x] and kP are
linearly disjoint over k. Thus, k(x1, ..., x;)/k is separable. []

4.3.16 Theorem. let K/k' and k'[k be separable extensions. Then
K]k is separable.

Proof. Let L be an algebraically closed field containing K. Then ket
and k' are linearly disjoint over k and k'? " and K are linearly disjoint over k'.
We assert that k?~* and K are linearly disjoint over k. For this, let x,, ..., x,
be k-linearly independent elements of k?~*. Since k?~' and k' are linearly
disjoint over k, the x, ..., x, are k’-linearly independent elements of k?t,
Since k’?”* and K are linearly disjoint, the x,, ..., x, are K-linearly inde-
pendent. Thus, k? ~* and K are linearly disjoint over k and K/k is separable. [J

4.3.17 Theorem. Let K/k be a separable extension of exponent charac-
teristic p > 1 and let S be a p-basis for K/ k. Then the set S is algebraically
independent over k.

Proof. Suppose that S is not algebraically independent and let s, .. ., s,
be a minimal set of distinct elements of S which are not algebraically inde-
pendent over k. Choose a finite set of monomials s, = 5,°-- -5, (e € 4)
such that

1. {s. | e € A} is a linearly dependent set over k;
2. A has as few elements as possible;
3. Secaley + -+ + e,) is as small as possible.

Let Secq CoSe = D Co51% -+ -8, = 0 be a nontrivial dependence relation
among the s, (e € 4) over k and note that ¢, # 0 for all e € 4, by (2). Choose
derivations D; = D,, € Der, K (1 < i < n) such that Dy(s;) = §;; for 1 -3 4,
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J < n (see 4.3.6). Applying D, to the above dependence relation, we get the
equation

z €,Co81%1 -+ 85 M-18 0 T sy B sy = 0,

ecAd
By the minimality assumptions (1), (2), (3), the monomials appearing in this
equation are k-linearly independent, so that e,c, = 0 for all e € A. This is of
course true for 1 < i < n. Since ¢, # 0 for all e € 4, it follows that the ex-
ponent e¢; is divisible by p for all ee 4 and 1 < i < n. But then the depen-
dence relation 3., ¢,s, = 0 says that the pth powers (5,517 - - - 5,°/P)? (e’ A)
are linearly dependent over k. Since K/k is separable, it follows that the
monomials s,°/®, . . ., 5,°/? (e € A) are linearly dependent over k (see 4.3.14).
But this contradicts the minimality assumption (3). Thus, S is algebraically
independent over k. [

4.3.18 Theorem (MacLane). Let K/k be an algebraic function field.
Then K/k is separable if and only if K/k is separably generated.

Proof. There is nothing to prove if p = 1. Thus, let p > 1. If K/k is
separably generated and y,,..., y, is a separating transcendency basis for
Kk, then K/k(ys, ..., y,) is separable and k(yy, ..., yo)/k is separable, by
4.3.15, so that K/k is separable, by 4.3.16. Suppose, conversely, that K/k is
separable and let S be a p-basis for K/k. Then K/k(S) is finite dimensional
and separable, by 4.3.8, and S is algebraically independent over k, by 4.3.17.
Thus, S is a separating transcendency basis for K/k and K/k is separably
generated. []

4.3.19 Definition. An affine variety V is separable if its algebraic
function field is separable.

4.3.20 Definition. A field k is perfect if every extension K of k is
separable.

Any field of exponent characteristic 1 is perfect. The perfect fields are
those fields k such that k = k® (see E.2.22).

4.3.21 Theorem (Schmidt). Let K/k be an algebraic function field and
let k be perfect. Then K/k is separably generated.

Proof. Since K[k is separable, K/k is separably generated by 4.3.18. []

E4 Exercises to Chapter 4

E.4.1 (Hilbert Nullstellensatz). Let X = {X,---, X,} and let k[ X] be the
polynomial ring in the algebraically independent elements Xj, - - -, X,. For
Ian ideal of k[X], the Hilbert Nullstellensatz states that for any fe k[X] such
that v(f) = O for every k-linear ring homomorphism v: k[X] —k = k,y
which vanishes on I, some power ™ of fis contained in 1. Using this, prove the
following.
(a) Let ¥V be a variety with ring of regular functions k[X]. Then the
mapping f+>f is injective on k[X], f: V—k being defined by
f®) = v(f) for ve V = Specg k[ X].
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(b) Let I be an ideal of k[X] and let C(I) be the surface {(vy,...,v,) €
k"| f(vs,...,v,) = 0 for fel} of zeros of I in k™. If fe k[X] and
f(@y,...,v,) =0 for all (vy,...,v,) € C), then f™ eI for some m.

(c) If Iis a prime ideal of k[x], then I = {f€ k[X] | f vanishes on C(J)}.

(d) If I is a maximal ideal of k[X] and k = k, then C(I) consists of a
single point (vy,...,v,), and I = {f;(X)(X1 — vy) + -+ + fu(X) x
(Xp — v,) | f(X)ek[X]) for 1 < i < n} and k[X] = k1 + I (direct).

E.4.2 (Irreducible Components).. Following the above notation, we say
that a subset C of k" is closed in the k-Zariski Topology if C = C(I) for some
ideal I of k[X]. A closed subset C of k™ is irreducible if C = C; U C, where
C, and C; are closed only if C = C; or C = C,. Prove the following.

(a) The collection of open subsets of k" is a topology for k™ (see E.0.85),
U being said to be open if k» — U is closed.

(b) The closed subsets of k™ satisfy the descending chain condition that any
descending chain C; © C, © C; 2 --- of closed subsets of k" has
only finitely many distinct terms. To prove this, assume the Hilbert
Basis Theorem, which states that the ideals of k[ X] satisfy the ascend-
ing chain condition that any ascending chain € I, © ;< --- of
ideals of k[ X] has only finitely many distinct terms.

(c) Show that a closed subset C of k™ is irreducible if and only if C = C(I)
for a unique prime ideal I of k[X]. (For the unicity, refer to the
preceding exercise.)

(d) Using the descending chain condition for closed sets, show that for
any closed subset C of k*, C = C; U ---U C, where the Ci, ..., C,
are maximal irreducible closed subsets of C. Show that the C; are
unique up to order of occurrence. The C; are called the irreducible
components of C.

E.4.3 (Density). Follow the notation and terminology above and let C be a
closed subset of k™. A subset U of C is an open subset of Cif U = C — D for
some closed subset D of k™. Prove the following.

(a) A subset U of Cis open in C if and only if there exist f3, . . ., f, € k[ X]
such that U = {(vy,...,0v,) € C| fi(v1, ..., v,) # O for some i with
1 < i < r}. (Use the descending chain condition for closed sets.)

(b) The collection of open subsets of C is a topology for C.

(c) if C is irreducible and U is a nonempty open subset of C, then U is
dense in C in the sense that any element f'€ k[ X] which vanishes on U
vanishes on C.

(d) If Cisirreducible, any two nonempty open subsets U, V of C intersect.

E.4.4 (Birational Equivalence). Let C and D be irreducible closed subsets
of k™ and k" respectively. Then C and D are birationally equivalent if C and D
have nonempty open subsets U and V respectively such that there exists a
bijection P from U to V given by

Puy,...,uy) = (Py(uy, ...y U)o or PoUy, ..., uy))
P-l(vla saes vn) = (Ql(vh ey vn)a L ] Qm(vl’ L} vn))
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for suitable rational functions P;, O, (1 < i < n, 1 < j < m) whose denomi-
nators do not vanish at any point of U, V respectively. The algebraic function
field of C is the field of quotients k£ (C) of the integral domain k[ X4, ..., X, 1/I
where I is the prime ideal of k[ X, ..., X;,] such that C = C(I). (See E.4.2.)
For a € k, identify a first with the constant polynomial aX® of k[X7, ..., X,],
then with the element a + I of the above integral domain, then with the
element af/l of k(C), so that k(C) is a field extension of k. Note that
k(C) = k(xy,...,x,) where x; = (X; + I)/1 for 1 <i < m. Similarly,
k(D) = k(y1, ..., yn)fory, = (¥; + J)/1forl < j < n where k[Y,,..., Y,]
is a polynomial ring in n commuting indeterminants Y; and J is the prime
ideal of k[ Y3, ..., Y,] such that D = C(J). Prove the following.

(a) C and D are birationally equivalent if and only if £ (C) and k(D) are
k-isomorphic. (Hint: Suppose that there is a k-isomorphism « from -
k(X1,...5 Xn) to k(¥1, . . ., yn), and let «(f) = f' for fe k(xy, ..., x,).
Find a nonzero element f* € k[x3, . . ., x,,] such that k[x3, .. ., x,, 1/f’]
> k[yi, ..., yu]- Then find a nonzero element g’ € k[y;, ..., y,] such
that k[x3,..., xm, 1/f', 1/g'] = k[y1, ..., yu, 1/g’]. Choose the open
sets U and V above so that the elements of k[xy, ..., x,, 1/f; 1/g] and
k[y1, ..., ¥a, 1/g'] can be regarded as functions defined throughout U
and V respectively).

(b) Using part (a), show that affine varieties ¥ = Spec; k[x4, ..., x,,] and
W = Specg k[y1, . . ., x,] have k-isomorphic algebraic function fields
if and only if the closed irreducible subsets ¥V = {(£,(v), . . ., £.(v)) |
veV} and W = {(H;(w), ..., $.(w)) | we W} of k™ and k™ respec-
tively are birationally equivalent.

E.4.5 (Tangent Space). Let ¥ be a variety with ring of regular functions
k[xy,...,x,] and let ve V. A tangent to V at v is a k-linear mapping
T: k[xy, ..., x,] =~k such that T(fg) = T(f)E@) + f)T(g) for f,ge
kixi, ..., x,]. The set of tangents to ¥ at v is denoted Tan, V. Prove the
following. ‘

(a) Tan, Vis a k-vector space of k-valued functions and the dimension of
Tan, V over k is at most n.

(b) The mapping T+ (T(x1), ..., T(x,) is a k-linear embedding of
Tan, V in k* whose image Tan; ¥ is the set of zangents to the surface
V={&MW),..., W) |weV} at & = (£,(), ..., £,(v)), that is,
the set of (¢, ..., t,) € k" such that

>
T 0X,
for all f' € I where 1 is the ideal of functions vanishing on V.
(¢c) For D e Dery k[x4, ..., x,] and v € V, the mapping
Dy k[xy,...,x,] >k
defined by D,(f) = D(f)(v) is a tangent to V at v.

E.4.6. lLet DeDer, K and let L,: K— K, R,: K— K be defined by
L.(y) = xy, R(y) = yx for y € K. Show that [D, L,] = Lp,and [D, R,] =

ti=0
D
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Rpy for x € K. Show that D commutes with L, and/or R, if and only if
D(a) = 0, for D € Dery, K, a € K. Show that D(k) = {0}.

E.4.7 (p-Dependence). Let Ljk be a field extension. For xe Kand S < K,
write x <, S for x € k(K?)(S). Show that < is a dependence relation in the
sense of E.1.20. A subset S of K is p-independent over k if S is independent in
the sense of E.1.20. Show that a subset S of K is a basis for X in the sense of
E.1.20if and only if S is a p-basis for K/k. Conclude that every extension K/k
has a p-basis and the cardinalities of any two p-bases of K/k are the same.
(See 4.3.5.)

E.4.8 (Leibniz’s Rule). For D e Der, K and x, y € K, prove that

@ ) = 3, (1) D)D)

) (D - (@ + bDH(xy) = Z (;)(D — aI)’"(x)(D — bIy*"(y)

fora,bek;
(©) Dr e Dery K for D e Der;, K (use part (a));
(d) letting K,(D) = {x e K| (D — al)™(x) = 0 for some m} for D € Der, K
and a € k, show that K,(D)K,(D) < K, (D).
E.49. Let 4 be an algebra over a field k of exponent characteristic p. For
x,y €4, let [x,y] = xy — yx. Define ad x: A — A by ad x(y) = [x, y] for
x, y € A. Show that

@) [x,y] = —[y, x] for x, ye 4;
(b) [[xa .Y], Z] + [[J’, Z]’ x] + [[Z, X], y] = 0 for X, ¥, Z € A;
(© [x,...[x [x, y]I...] (x occurring p-times) is the same as [x?, y] for

X, yEA;
(d) ad [x,y] = [ad x, ad y] for x,y € A, where [ad x, ady] = ad x ad y
—adyadx;

(e) ad x* = (ad x)? for x € A.
An additive subgroup B of 4 such that [x, y] € B for x, y € B is called a Lie
ring in A. Show that Der, K is a Lie ring in End, K.

E.4.10. Show that there are separable extensions K/k which are not
separably generated over k.

E4.11. Let K = k(X) where X is transcendental over k. Let f = X3 +
X+ 1 and g = X2+ X2 and let k' = k(f,g). Find yek’ such that
k' = k(y).

E.4.12. Let L be a field, G a subgroup of Aut L, K a subfield of L stable
under G. Show that K and L€ are linearly disjoint over K N LS. (Hint:
Review the proof of Dedekind’s Lemma.)

E.4.13. Let K be a field, G a subgroup of Aut K. Show that K/K€ is
separable. (Hint: Use E.4.12.)
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This chapter is devoted to material which, like the Galois Correspondence
Theorem, relates the structure of a field extension K/k to that of some asso-
ciated algebraic structure. In 5.1, we relate the field extension K/k to the ring
End,. K of endomorphisms of K/k. The main theorems here are the Jacobson-
Bourbaki Correspondence Theorem (see 5.1.7) and a theorem on descent by
rings of endomorphisms (see 5.1.10). In 5.2, we relate K/k to the Lie ring
Der,, K of derivations of K/k. We prove here the Jacobson Differential Corre-
spondence Theorem (see 5.2.6) and a theorem on descent by Lie rings of
derivations of K/k (see 5.2.9). We also describe in detail the structure of finite
dimensional radical extensions of exponent 1 (see 5.2.12). In 5.3, we relate
Kk to the biring H(K/k) of endomorphisms of K/k (see 5.3.2). We prove a
Biring Correspondence Theorem (see 5.3.12) and describe the structure of
H(KJk) for K[k Galois/radical/normal (see 5.3.20).

5.1 Rings of endomorphisms of X

We begin by considering the ring End K = {T: K— K| T(x + y) =
T(x) + T(y) for x,ye K} of endomorphisms of a field K. The identity
element of End K is denoted by I. We regard End X as a vector space over K
with respect to the scalar multiplication xT (x € K, T € End K) defined by

xTY») = (T (y)) for ye K.

5.1.1 Definition. A K-subring of End K is a subring & of End K which
is a K-subspace of End K.

Note that the one-dimensional subspace KI of End K containing 7 is a
K-subring of End K contained in every K-subring of End K. For any subfield
k of K, the ring End, X of k-linear endomorphisms of K is a K-subring of K
and (End, K):K = K:k if K:k < o (see E.5.1).

5.1.2 Definition. The groundfield of a K-subring &/ of End K is the
subfield K¥ = {y e K| T(xy) = T(x)y for Te o/, x e K} of K.

Note that if o/ is a K-subring of End K, then &/ < Hom, . K.

An important example of K-subring of End K is the K-span K[G] of a
group G of automorphisms of K. The set G is a basis for K[G] over K (see 3.1).
If & = K[G], then K¥ = K°.

Let o/ be a K-subring of End K. Let £: o/ > K be defined for x € K by
(T) = T(x)for Te  and let K, = {£ | x € K} for K, < K. Note that K is
contained in the dual space Homy (& K) of .o/ and that K separates %/, that
is, £(S) = #(T) for all xe R only if § = T (S, T € ).

111
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5.1.3 Definition. /¥ = {Re L |T(xR) = T(x)R for Te &, x e K}.
Note that 2/ is a K subspace of <,

5.1.4 Proposition. Let K, be a subset of K such that K, separates <.
Then &% = {Re & | R(K,) < K¥#}.

Proof. Let Re s/ We claim that T(xR) = T(x)R for all Te o, x e K if
and only if R(K,) < K¥, thereby establishing the assertion. From the
equations

HT(xR)) = T(xR)(y) = T(xR(),
HT@R) = (THR)(Y) = T(X)R()

we see that T(xR) = T(x)R for all T € &, x € K if and only if T(xR(y)) =
T(x)R(y) for all T € o, x € K and for all y € K. The latter condition is that
R(K) < K#. [

5.1.5 Corollary. ¥ = {Re /| R(K) < K#}. ]

5.1.6 Theorem. let &7:K < co. Then /¥ is a K¥-form of & and
K = K: K.

Proof. Since K is a subset of the dual space Homy, (<7, K) and K separates
&, K contains a basis K, = {£,, ..., £,} for Homy (%, K) and &/ has a dual
basis Ry,..., R, (n = «:K). Now R,(x;) = £(R;) = §; for all i, so that
R(K,) = K¥ and Rye /¥ (1 < j < n). We claim that R;,..., R, is a K¥-
basis for &%, Thus, let R € &/* and take the unique y,, ..., y, € K such that
R = 3%t y,R,. Then y, = 3t y,Ri(x;) = R(x;)e K¥. Thus, R;,..., R, is a
basis for /¥ over K¥ and &% is a K¥-form of &/ To show that &7: K =
K: K, it suffices to show that xq, ..., x, is a basis for K over K¥. If x =
>4 x;y; where y; - - - y, € K¥, then R/(x) = >% R/(x)y, = y;. Since R(x), ...,
R, (x) € K¥# (see 5.1.5), what we must therefore show is that x = 37 x;R/(x).
Since [ is a linear combination of R;, ..., R, over K, it suffices to show that
R,(x) and R,C% x;R(x)) = 21 Ri(x;)Ri(x) are equal for 1 < j < n. But this is
clear from the orthogonality Ri(x;) = 8; (1 < i,j < n). [

5.1.7 Theorem (Jacobson-Bourbaki). Let &/:K < co. Then «/ =
Endyz« K.

Proof. Clearly o < Endg« K. But (Endyv K):K = K:K¥ = o/:K by
the preceding theorem. Thus, &/ = Endzw K. [J

. The above theorem shows that k — End, K defines a bijective inclusion
reversing correspondence between the set of subfields £ of K of finite co-
dimension K:k and the set of K-subrings &/ of End X of finite dimension
& : K. This correspondence is called the Jacobson-Bourbaki Correspondence.

We now briefly describe a process of descent by K-subrings of End X
which is analogous to the Galois descent of 3.2. For this, let 2/ be a K-
subring of End K, V a vector space over K.
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5.1.8 Definition. An /-product on V is a mapping & x V—V,
denoted (7, v) — T (v), such that

1. Iv) =vforveV;

2. S(T)) = (ST)() for S, Te A, ve V;
3.S+T)v)=Sw@ +Tw)for S, TeAveV;
4. Two+v)y=T@ +T@W)forTe,v,v' cV;
5. (xT)v) = x(T@)) for xe K, Te A, ve V.

5.1.9 Definition. The ground subspace of a vector space V over K with
«/-productis the K#-subspace V¥ = {v € V| T(xv) = T(x)v for Te <, xe K}
of V.

Note that ¥ is a K¥-subspace, being closed under addition and satis-
fying T (x(yv)) = T((xy)v) = T(xp)v = (T (x)y)o = T(x)(yv)for Te o/, x €K,
yeK# ve V¥,

The multiplication mapping & x & — & of the ring </ is an .«/-product
on 7 and the corresponding ground subspace of <7 is the already familiar
A¥ ={Re sl | T(xR) = T(x)R for Te o, x € K}.

For V = K", the mapping & x V— ¥V defined by T(xy,...,x,) =
(T(x1),..., T(x,) for Te S, (xy,..., x,) € Vis an sZ-product on ¥, and the
corresponding ground subspace is &/ = (K¥)".

More generally, if V = K ®, W where k is a subfield of k¥ and Wis a
vector space over k, the product &/ x ¥V — ¥V such that

T(in@)w{):ZT(x;)@w, for Te <,
1 1

21 x @ w; e Vis an &/-product on V. If k = K#, the corresponding ground
subspace is V¥ =1 Q, W.

Finally, if G is a group of automorphisms of K and &/ = K[G], then a
G-product G x V— ¥, denoted (o, v) = o(v), deternines an .&/-product
& x V—V on V, defined by (3, x,0)(v) = 3, x,0(v) for 5, x,c € A, ve V.
In showing this, only the verification of condition 2 of 5.1.3 presents a prob-
lem, and it suffices to consider the case S = o and T = xr where x € K, o,
7€ G. Then ST = o(x)(o7) since (ST)(y) = S(T(»)) = o((x7)(¥)) = o(x7(y))
= (a(x)(e7))(y) for y € K. But then we have S(T(v)) = o((x7)(v)) = o(x(7(v)))
= a(x)(o((v))) = o(X)(o7)(®)) = (o(x)(o7))(v) = (ST)(v) for ve V. Thus,
condition 2 is satisfied. The corresponding ground subspace of Vis V¥ = V¢

It is a consequence of 5.1.10 below that if & = K[G] where G is a finite
group of automorphisms of K and if &/ x ¥V — V is an /-product on a
K-vector space V, then the restriction G x ¥V — Vis a G-product on V.

We know from the preceding section that /¥ is a K“-form of &/# if
#/:k < oo. This is also true for any vector space ¥ over K with <Z-product, as
we now show.

5.1.10 Theorem (Jacobson). If .o/# is a K¥-form of &, then V¥ is a
K#-form of V and V¥ = &/#(V) where &/#(V) is the additive subgroup of
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V generated by {R(v) | R € /¥, v € V}. In particular V¥ = &/¥(V) and V¥
is a K¥-form of V if &/:K < .

Proof. Let Re o/% and ve V. Then T(xR) = T(x)R and consequently
T(xR(@)) = (T(xR)(v) = (T(x)R)(v) = T(x)R(v) for Te o xeK. Thus,
R(w)e V¥ for Re &4, ve V and &¥(V) < V¥. Assume now that &/« is a
K#-form of & Then I = 3% xR, for suitable x; € K, R, € /¥, and we have
v=1I@) =>%x,R() for veV. Thus, &¥(V) spans V over K. Since
AA(V) < V¥ V¥ spans V over K. Now let {v, | « €J} be a K#-basis for
V#, Since V# spans V over K, {v, | « €J} spans V over K. Suppose that
e Yele = 0, the x, being elements of K. Then

0= Ri(Ea: yava) = ; R(yo)v.

and Ri(y,) € Z¥(K) = K¥ (1 < i < n). By the K#-independence of the v,,
R(y,) =0 (1 <i < n). But then y, = I(y,) = >t x;.R(y,) = 0 for all e.
Thus, the v, are K-independent, so that {v, | « € J} is a basis for ¥ over K and
V# is a K#-form of V. Since &/¥(V) < V¥ and «#(V) is a K¥-space
which spans ¥V over KX, it follows that &/ (V) = V¥. ]

5.2 Lie rings of derivations of K

We now consider the Lie ring Der K = {D € End X | D(xy) = D(x)y +
xD(y)} of derivations of a field K (see E.4.9). Note that Der K is a K-subspace
of End K. We let Der, K = Der K N End,. K. Since Der, K = {0} for finite
dimensional separable extensions (see 4.3.3) and since finite dimensional field
extensions of characteristic 0 are separable, we assume in this chapter that K
has nonzero characteristic p.

Letting [D, E] = DE — ED for D, E € End K, we have D, E € Der K =
[D, E] € Der K. Furthermore, D € Der K = D? € Der K (see E.4.6, E4.8,
E.4.9).

5.2.1 Definition. A K-sub Lie ring of Der K is a K-subspace 2 of Der K
such that [D, E]le 2 and D* € @ for D, E€ 2.

Note that for any subfield k of K, Der, K is a K-sub Lie ring of Der K.

5.2.2 Definition. The groundfield of a K-sub Lie ring 2 of Der K is the
subfield K2 = {y e K| D(xy) = D(x)y for all De 2, x € K}.

For any K-sub Lie ring 2 of Der K, K? is the subfield {y e K| D(y) = 0
for D e 9. \
Let K* = {x* | x € K,} for any positive integer e.

5.2.3 Proposition. K? < K2 for any K-sub Lie ring & of Der K.
Proof. Let xe Kand D e 2. Then D(x*) = px*"1D(x) = 0. []

5.24 Proposition. Let k be a subfield of K such that K? < K. Then
K? = k for @ = Der, K.
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Proof. Let xe K — k and let k' be a maximal subfield of K not contain-
ing x. (Such a k’ exists, by Zorn’s Lemma.) Suppose that K 2 k'(x) and take
y€K — k'(x). Then xek’(y), by the maximality of k', so that k' & k'(x)< k'(p).
Now x?ek’ and y?ek’, so that k'(x):k = p and k'(y):k = p. Thus,
k'(x) = k'(y) and y € k'(x), a contradiction. It follows that K = K'(x). Let T
be the k'-linear transformation on K such that 7'(x%) = ixfor0 < i < p — 1.
Since x” € k', one shows easily that T'(x) = ix for all i, so that T € Der, K.
Consequently, x ¢ KP*%X for x € K — k and KP"eX = k. [

Let 2 be a K-sub Lie ring of Der K. Let £: 2 — K be defined for x € Kby
(D) = D(x) for De 2, and let K, = {x | x € K,} for K, < K. Then K is a
subset of the dual space Hom (2, K) of 2 and K separates 2. Let = be the
prime field of K.

5.2.5 Theorem. let 9:K < co. Then 9 has a n-form 7, consisting of
pairwise commuting =-diagonalizable derivations. The dimensions 2: K and
K:K? are related by K: K? = p2k,

Proof. Since Kseparates 2, K contains a basis £,, . . ., £ for Homy (2, K).
Let Ti,..., T, be the basis for 2 defined by the equations £(T}) = 8:;x;
(1 < i,j < n). We then have Ti(x,) = §,x,for 1 < i,j < n and therefore

[T, T5)(x)) = TUT(x) — T(Ty(x,)) = 0
Ttp(xr) = Sirxr = n(xr)

for 1 < i,j,r < n. Since the £, (1 < r < n) separate 2 and since (T, T,], 0,
T, T, are elements of &, we have [T}, T;] = 0and T,» = T, for 1 < i,j < n.
Since T satisfies the separable polynomial X” — X and since the roots of
X? — X = [Taea (X — a) lie in =, T; is m-diagonalizable for 1 < i < n (see
E.5.6). Let 7, be the #-span of T, ..., T,. Clearly, 7, is a #-form of 2 con-
sisting of pairwise commuting =-diagonalizable derivations. Letting K, =
{xeK|T(x) = «(T)x for TeT,} for aeR = Hom, (7, o), we have
Ky =K? K =2, ®K,and K,K; < K, for «, B € R (see E.5.6). Taking
x5 € Kz — {0}, we have 3, @ K, = Kx; = D, K,X;. Since Kyx; < K, p
for all « € R, it follows that K,x, = K, ; for all «. In particular, K, = K%x,
for « e R, where R, = {8 R | K; # {0}}, so that K = Duery D K?x,. We
have seen that the finite set R, is closed under addition. It follows that R, is a
w-subspace of R = Hom, (7, n). Since R, separates 7, it follows that
R, = R, so that K = 3,.g @ K?x, and K:K? = |R| (number of elements
of R). But [R| = p7»*"and J,:7 = 9:K. Thus K:K? = p2:k. [

5.2.6 Theorem (Jacobson). Let Z:K < co. Then 2 = Der,2 K.

Proof. We have & < Derg2 K. But p?*¥ = K: K9 = kP95 = p®er,gK)
and 9 = Derg2z K. [

The above theorem shows that k > Der, K defines a bijective inclusion
reversing correspondence between the set of subfields of K such that
K:k < o0 and K? < k and the set of K-sub Lie rings 2 of Der K of finite
dimension Z:K (see 5.2.3 and 5.2.4). This correspondence is called the
Jacobson Differential Correspondence.
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We next discuss a process of descent by K-sub Lie rings of Der K. For
this, let 2 be a K-sub Lie ring of Der K, ¥ a nonzero vector space over K.

5.2.7 Definition. A D-product on V is a mapping 2 x V — ¥, denoted
(D, v) — D(v), such that

D(E(v)) = [D, E](v) + E(D()) for D, Ec Z,ve V,

(D + E)v) = D(v) + EQw) for D, Ec D,veV;

D@ + w) = D(v) + D(w) for De D,v,we V;

D(xv) = D(x)v + xD(@) for De D, xecK,veV,;

(xD)(v) = x(D@)) for xe K, De D,ve V;

(D) = (D7), for De P, where D;: V— V is defined by D.(v) =
D@)for DeD,veV.

ANl S

5.2.8 Definition. The groundsubspace of a vector space V with Z-
product is the KZ?-subspace V? = {ve V| D(xv) = D(x)v for all xe K,
De 2} of V.

The Lie ring product 2 x Z — 2 fails to be a D-product on & because
condition 5 is not satisfied. All of the other conditions, however, are satisfied.

For ¥V = K", the mapping & x V — V defined by D(xi,...,x,) =
(D(xy), ..., D(x,)) for De D, (x1,...,x,) €V is a Z-product on V with
ground subspace V? = (K2)".

If V = K ®, W where k is a subfield of K2 and W is a vector.space over k,
then the product 2 x ¥V — V such that DI x; @ w;) = 21 D(x)) ® w; for
De2 and 3t x;,Qw,e KQ®, W is a D-product on V. If k = K?, the
corresponding groundsubspace is V2 =1 Q W.

5.2.9 Theorem (Jacobson). Let 2:K < w andlet Z x V—V be a
2-product on the nonzero vector space ¥ over K. Then V7 is a K?-form of
V. Letting 7, be any n-form of 2 consisting of pairwise commuting -
diagonalizable derivations, we have K = J,.g P K, and V = Do DV}
where R = Hom, (7,,7), K, ={xeK|T(x) = «(T)x for TeZ,} and
Vi={eV|T@w =pTwforTeT,}(e,cR). Foralle, R, K, and V;
are nonzero, K, Ky = K, .5, K,V = Vyup, Ky = (K9)x, for o € K, — {0} and
Vs = (K?)v, for v, € V; — {0}.

Proof. Since the elements of 7, are m-diagonalizable and commute pair-
wise, K = > @ K,. Furthermore, the w-diagonalizability of an element 7 of
7, implies that T» = T, hence that (T;)” = T, (see condition 6 of 5.2.7).
Thus, T} is a #-linear transformation of ¥ at which the polynomial X? — X =
[Teer (X — a) vanishes. Since X? — X is separable and its roots lie in =, T} is
w-diagonalizable on ¥ (see E.5.6). Since the elements T of .7, commute pair-
wise, the elements T, of J,, = {T,. | T e 7.} commute pairwise. It follows
that ¥V = J3.r @ V.

Letting Te 7, x€ K, and y € K; (e, B € R), we have T'(xy) = T(x)y +
xT(y) = (T)xy + B(T)xy = (« + BYT)(xy). Similarly, T(xv) = T(x)v +
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XT(®) = (« + B)(T)(xv) for v € V. Thus, KK, < K,, sand KV, < V5.
Take x, € K, — {0} and note that

> ®K, =K=x,K= D ®DxK; = > ®Kypp = K.
BER BeER BeR

It follows that x,K; = K, ., for all «,fe R, = {«eR | K, # {0}}. Conse-
quently, K, = K,x, and K,K; = K, for o, 8 € R,. Since R, is a nonempty
subset of the finite additive group R and R, is closed under the operation +,
R, is an additive subgroup of R, hence a m-subspace of R. Since R, separates
points, it follows that R, = Hom, (7,, #) = R. Thus, K, # {0} for « € R.

Next, take x, € K, — {0} and note that

DOVi=V=xV=3 @xV3S > @ Vs

BeR BER BER
It follows that x,V; = V,,, and K,V; = V,,, for all «, BeR. Since V is
nonzero, V, is nonzero for some g € R. Thus, V,, s = X,V is nonzero for all
«€R. Since o« + R = R, it follows that ¥, # {0} for all y e R.

We now show that ¥, is a K,-form of V. We see from the foregoing dis-
cussion that ¥V, # {O}and V = S, (n ® V, = Deer P KV, so that V is the
K-span KV, of V,. We claim that, moreover, a Ky-independent subset of the
Ky-space V, is a K-independent subset of V, thereby establishing that ¥, is a
Ko-form of V. Suppose not and let vy, . . ., v, be a minimal Ky-independent
subset of ¥, which is K-dependent. Choose elements X1, .. ., X (not all zero)
of K such that 37, x,v, = 0. We may take x,, = 1 with no loss of generality.
Then

m m—1
0= T(Z xiv,) = Z T (x)v; for Te 7,
1 1

since v; € ¥, for all i and T(x,) = T(1) = 0. Since v,,...,0,-,; are K-
independent, we have T'(x;) = O for T € Z,. Thus, x; € K, for all i. But then
U1, ..., Uy are Ky-dependent, a contradiction. It follows that ¥, is a K,-form
of V.

Finally, 2 = K7, so that K, = K2 and V, = V2. Thus, V2 is a
K?-form of V. ]

Let K/k be a radical extension.

5.2.10 Definition. The exponent of K|k is e if x** € k for all x € K and e
is minimal with respect to this property.

5.2.11 Definition. A p-basis for K/k is a minimal subset S of K such
that K = k(K”) where K* = {x? | x € K} (see 4.3.5).

We have seen that K2 = k for 2 = Der,, K if and only if K]k is a radical
extension of exponent 1. Throughout the remainder of this section, we
assume K/k is a finite dimensional radical extension of exponent 1. We
furthermore fix a p-basis {x,, .. ., x,} for Klk.

Taking k; to be a maximal subfield of K containing k and {X15 vy Xp} —
{x;} but not containing x;, we obtain as in the proof of 5.2.4 a derivation T, of
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K/k, such that Tj(x;) = x,. Since Ti(k;) = {0}, we have T(x;) = O for i # j.
Since {x, . .., x,} generates K over k, {xy, ..., x,} separates Der, K. Since a
derivation D of 2 coincides with 3% D(x,)x; 'T; at the x; (1 < i < n),
D = 3% D(x)x;”*T;. Thus, Ty, . .., T, is a K-basis for Der, K. The field K is
the k-span of {x;%---x,% |0 < d; < p — 1 for all i}, since the latter is a
subfield of K containing k and {x,, ..., x,}. Since K:k = pZ*%¥ = p", the set
{x,% - x,% |0 < d, < p— 1foralli}isa k-basis for K. Since Ti(x;% - - - x,%)
= dix,% - - x,%, the m-span J, of T, . . ., T, is a n-form of Der;, K consisting
of pairwise commuting #-diagonalizable derivations of K/k. The decomposi-
tion K = S,ern @ K, of K with respect to 7, described in the proof of 5.2.9
is given by K, = kx,% - - - x,% where « is the w-linear function on J, such
that o(T}) = d; (1 < i < n). The K-span & of {T1%1-- - T,% |0 < d, < p — 1
for all i} is a K-subring of End K, as one sees by applying the easily verified
equations

xS)Y(yT) = xS(WT + (xy)(ST) (xeK, S, TeT,)
TP =T, (1<i<n).

Since K# = K2 = k, we have o/ = End, K under the Jacobson-Bourbaki
Correspondence. We have now proved the following theorem.

5.2.12 Theorem (Jacobson). Let K/k be a finite dimensional radical
extension of exponent 1. Let xi, ..., x, be a p-basis for K/k. Then K has
k-basis {x;%---x,% |0 < d, < p—1 for all i} and End, K has K-basis
{Ty---T,% |0 <d <p—1 for all i} where Ty,..., T, is a K-basis for
Der, K such that Ti(x;) = &;,x,for1 < i,j < n. The n-span 7, of Ty, ..., T,
is a =-form of Der, K consisting of pairwise commuting =-diagonalizable
derivations and the decomposition K = J,.x @ K, of K with respect to 7,
described in the proof of 5.2.9 is given by K, = kx;% - - - x,% where « is the
m-linear function on 7, such that «(T}) = d; (1 < i< mn). [

5.3 Birings of endomorphisms of K

Finally, we describe for any field K a unique maximal K-subring H(K) of
End K having the property that for each x € H(K), there exist 1x, X1, oX,
Xg, .+ - .y X, Xn in H(K) such that x(ab) = 3, ;x(a)x(b) for all a, b€ K. The
elements x of H(K) can be regarded informally as generalized homomor-
phisms from K to K. This H(K) is called the K-biring of K. The finite dimen-
sional K-subbirings H of H(K) (see 5.3.1) are of the form H = Endx» K and
therefore correspond bijectively to the subfields of K of finite codimension.
For any finite dimensional subbiring H of H(K), K/K" is Galois/radical/
normal if and only if H is co-Galois/coradical/conormal (see 5.3.20). If K/K*
is normal with decomposition K = KgaK;aq (internal tensor product of K*-
algebras) where Kg./K? and K,.o/K*¥ are Galois and radical extensions of
K¥ respectively (see 2.3.16), then H has a decomposition H = HgaHraa
(internal tensor product of K#-algebras) where Hg,; and Hi,q are co-Galois
and coradical subbirings of H = H(K/K*). The component Hg,; of H is the
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Kear-span of the Galois group G(K/K*¥) and the component Ky, of X is
studied using Hg,, as described in Chapter 3. The components H,,4 of H and
K, .4 of K are the objects of study of Chapter 6.

Throughout the section, K is a field, k is a subfield of K, = is the prime
field of K and p is the exponent characteristic of X.

5.3.1 Definition. A coclosed subset of End K/End, K is a subset H of
End K/End, K such that for each x € H, there exist ,x, X, .. ., X, X, in H
such that x(ab) = 2, x(a)x,(b) foralla, b € K. A K-subbiring of End K/End, K
is a coclosed K-subring of End K/End, K.

5.3.2 Definition. H (K)/H (KJk) is the union of all coclosed subsets of
End K/End (K/k).

Note that H(K) = H(K/).

5.3.3 Proposition. For any two coclosed subsets H,, H, of End K, the
set HH, = {xy | x € H,, y € Hy,} is a coclosed subset of End K.

Proof. ~ Observe that if x(ab) = 3, x(a)x(b) and y(ab) = 3, ,y(a) y,(b)
for all a, b € K, then (xy)(ab) = 3, ,; x;y(@)x,y,(b) for all a, b K. ]

Since unions and K-spans of coclosed subsets of End K are coclosed, and
since {1} (/ being the identity mapping from K to K) is coclosed, the following
corollary is an immediate consequence of 5.3.3.

5.3.4 Corollary. H(K) and H(K/k) are K-subbirings of End K and
End, K respectively. []

5.3.5 Lemma. Let x,x;, ;y,y;€ HKJk) for 1 <i<m, 1<j<n.
Then
2 x(@xb) = > ya)yb) forallabek

i j

if and only if
Z MR Xy = 12 iV Qk V-

Proof. Fix a, b e K. Then u(a)v(b) is K-linear in u and v (u, v € H(K/k)),
so that there exists a K-linear mapping H(K/k) ®x H(K/k) — H(K/k) such
that u Qg v > u(a)v(b) for all u, v € H(K/k). Thus, 3, ;x Qx x; = 25V Qrys
implies that 3, ;x(a)x,(b) = 3, ;¥(a)y,(b) for all a, b € K. Conversely, suppose
that 3, ;x(a)x(b) = 3, ;»(a)y,(b) for all a,be K. Let e, be a K-basis for
H(K/k) and X; = Zr Xir€r, Yi = Zr YVir€y fOI' a]l l’] Then Zr Zi ix(a)xirer =
2r 23 1Y@ yner, s0 that 3, x(a)x, = 3, ;¥(a)y; for all rand all g € K. Thus,
21 %u(ix) = %, yu(;y) for all r, whence

Z Z xir(fx Qx er) = z 2 yjr(jy Rk er)

and 3, x Qg x; = 3 Y ®ry. 0

5.3.6 Definition. A: H(K|k) — H(Klk) @x H(KJk) is the mapping
such that for x € H(K/k), Ax = 3, x Qg x; if and only if the ,x, x; are
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elements of H(K/k) such that x(ab) = 3, x(a)x;(b). And e: H(K/k) — K is
the mapping defined by £(x) = x(1) for x € H(K/k).

5.3.7 Proposition.
x(abe) = 2 (@, (x)®)(x),(0) = >, ()@ (B)xi(c)
i,r i,r
and
x(a) = Z e(:xX)x;(a) = Z e(x)x(a) for a, b, ce K.
i i
Proof. x(abc) = x(a(be)) = i, %(a),(x:)(B)(x):(c) and x(a) = x(la) =
S x(Dxi(a) = 3, e(1x)xi(a) for a, b, c € K. These observations establish two
of the above assertions. The other two are similarly established using
x(abc) = x((ab)c) and x(a) = x(al) for a,b,ce K. [l

5.3.8 Proposition. A and e are K-linear mappings such that

L 20r i @ () ® (X)), = 24r %) @ (%) @ x; for xe H(Kk) (A is
coassociative);

2. x = 3 e(ix)x; = 2 e(x;)x for x € H(K/k) (¢ is a coidentity);

3. A =1Q®1I and A(xy) = 3 ;x;y Q xiy; for x,ye HKk) (A
preserves products);

4. (I) =1 and e(xy) = e(x)e(y) for x,ye H(K/k) and &(y)ek (e
preserves products);

5. x(ay) = 2; x(a)x;y for x, y € H(K]k) and a € K.

Proof. 1Itis clear that A and ¢ are K-linear. That A is coassociative and &
is a coidentity follows from 5.3.7 (see E.5.3). That A preserves products was
shown while proving 5.3.3, it being obvious that A(J) = I ® I. And we have
eIy = I(1) =1 and e(xy) = (xp)(1) = x(¥(1)) = x(1)¥(1) = e(x)e(y) for
x,y € H(K/k) and &(y) = y(1) € k. Finally, we observed while proving 5.3.3
that x(ay) = 3, :x(@)x;y for x, y € H(K/k) and a € K, as one sees from the
equations x(ay(b)) = 2; x(@)x,(¥(d)) (b€ K). @

Properties (1) and (2) of 5.3.8 say that H(K/k) together with A and ¢ is a
K-coalgebra (see C.1). Properties (1) through (4) of 5.3.8 say that H(K/k) to-
gether with its k-algebra structure and K-coalgebra structure is a K/k-bialgebra
(see B.1). Property (5) of 5.3.8 says that left translation in H(K/k) is semilinear.

5.3.9 Definition. A subbiring of H(K) is a subring H of H(K) such that
for each x € H, there exist ;x x; € H such that Ax = 3, ;x Qg x;, and such
that K; = «(H) is a subfield of K, H > K and a Ky-basis for H is a K-basis
for the K-span KH of H. A subbiring/k-subbiring of H(K/k) is a subbiring H
of H(K) contained in H(K/k) such that K;; > k/K, = k. For any subfield k"
of K, a k'-subbiring of H(K) is a subbiring H of H(K) such that K; = k'.

Letting H be a subbiring of H(K), note that there is a unique mapping
Ay H— H Qg, H such that Ay(x) = 3 ,x Qk, x; if and only if the x, x;
are elements of H such that x(ab) = 3, ;x(a)x;(b) for all a, b € K (see E.5.4).
Letting z4: H — Ky be defined by e4(x) = &(x) for x € H, we have K-linear
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mappings Ay, ey satisfying properties (1), (2), (3), (5) of 5.3.8 with K being
replaced by K. If H is a subbiring of H(K/k), then property (4) of 5.3.8 is
also satisfied and H together with Ay, &y is a Ky /k-bialgebra in the sense of
B.1.

We now prove a correspondence theorem for K-subbirings of End K,
which we refer to as the Biring Correspondence Theorem. For this, let K be a
field and let

F = {k | k is a subfield of K and K:k < oo}.
S = {H| H is a K-subbiring of End K and H:K < o}.
5.3.10 Theorem. For k €¥, H(K/k) = End, K.

Proof. Let A = Homg (End, K, K) be the K-dual space of End, K. For
a € K, let 4 be the element of 4 defined by d(x) = x(a) for x € End, K. Letting

e, ..., e, be a k-basis for K and choosing x,..., x, € End, K such that
xi(e;) = &, for 1 < i,j < n, we have a K-basis x,, . .., x, for End, K and a
dual K-basis é,, . . ., é, for A. Clearly é,, . . ., é, is a k-basis for the k-subspace

K={d|aeK}of 4 and 4 = KR (K-span of R). It follows that 4 has a
unique commutative K-algebra product 7: 4 ®, A — A such that (4, b) =

;B for all 4, b € R (see A.2). Since End,, K and A4 are finite dimensional and
dual over K, = induces 7*: End,, K — End, K Q¢ End, X such that =*(x) =
21 % Qx x; if and only if (w(f, £))(x) = 3 f(x)g(x,) for all £, g € A (see C.1).
Thus, 7*(x) = 3, x ®x %, if and only if ab(x) = 3, d(x)b(x,) for all a, b € K,
hence if and only if x(ab) = 3, ;x(a)x,(b) for all a, b € K. Thus, H (Kjk) =
End, K. []

5.3.11 Definition. For H < End K, K is the subfield K¥ = {acK |
x(ab) = ax(b) for all x € H and b € K} of K.

We now have the following version of the Jacobson-Bourbaki Corre-
spondence Theorem, which we refer to as the Biring Correspondence Theorem.

5.3.12 Theorem. F is mapped bijectively to S by k — H(K/k).
Proof. In view of 5.3.10, this follows from 5.1.7. ]

Finally, we describe the structure of H(KJk) for Kk Galois/radical/
normal. For this, let H be a subbiring of End K, let K, Ay, ey be as described
at the end of 5.3.9 and let K, = Ky N K",

5.3.13 Definition. An element g of H is grouplike if Apg = g Q@ gand
ex(g) = 1. The set of grouplike elements of H is denoted G(H).

Note that G(H) is a semigroup with identity I consisting of K*-linear field
homomorphisms from X to K, so that G(H) is a K-independent set by the
Dedekind Independence Theorem (see 3.1.3).

5.3.14 Definition. H is co Galois if G(H) is a group and H = K,G(H)
(Ky-span of G(H)).
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Note that the product in K,G(H) is semidirect in the sense that (ag)(bh) =
ag(b)(gh) for a, be Ky, g, h € G(H).

5.3.15 Definition. For S < H, S° = {x€ S| ey(x) = 0}..

5.3.16 Definition. An element x e H is primitive if ey(x) = 0 and
Ayx = x @ I + I ® x. The set of primitive elements of H is denoted D(H).
For xe H and S < H, x is primitive modulo S if ey(x) = 0 and Ayx =
x®@I+1I®x+ >%:x ® x; where the ;x, x; are in S° for i > 3.

Note that D(H) is a K-sub Lie ring of Der K for H a K-subbiring of
End K.

5.3.17 Definition. A filtration for H is a sequence H; of K| H-subspaces of
H such that H, = KyI, H; © H,,, and each element x of H?,, is primitive
modulo H; for all i.

5.3.18 Definition. H is coradical if H has a filtration.
H is coradical if and only if KH is coradical (see E.7.1).

5.3.19 Definition. H is conormal if H has a co Galois subbiring Hg,
and a coradical subbiring H,,q such that H = Hg, H,.q (internal tensor
product of Ky”-algebras) (see A.2).

5.3.20 Theorem. let K:k < co. Then K[k is Galois/radical if and only
if H(K/k) is co Galois/coradical.

Proof. Let H = H(K/k) and note that since H:k < oo, G(H) = Aut, K
If K/k is Galois, then H = KG(H) since KG(H) is a K-subbiring of End K and
KH = |k = K6 = KXGH (see E.5.2 and 5.3.12). If, conversely, H =
KG(H), then k = K¥ = K%™ and K/k is Galois. Thus, K/k is Galois if and
only if H(K/k) is co Galois.

Suppose next that K/k is radical. As in the proof of 5.3.10, the dual K-
algebra 4 = H* of H as K-coalgebra is 4 = KK (K-span of K) where K is a
k-subalgebra of 4 isomorphic to K under a k-linear mapping a > 4 from K
to K. Let M= {3tab|nz=1,a, bjeKforl <i< nand X7 ab;, = 0}.
Then M is an ideal of Aand 4 = K1, + M where 1, is the identity element
of A. We claim that M consists of nilpotent elements, whence A4 is a split
local K-algebra (see A.3). Thus, let Z a;h; € M and choose e such that

“ekforl <i < n Then

n . n/\ /nf\
(Z ail;i) "= Z a‘PeB‘pe = z alpebipe = (z aib,) ¢ - ’.\,
1 1 T T

so that 3% b, is nilpotent. Thus, 4 = H* is a split local K-algebra, and H is
coradical by C.4.

Suppose conversely that H is coradical and let H; be a filtration of H.
Then H = \U§ H, for some n, since K:k < o0. Note that K = K¥o, We claim
that (KH)? < KHi+1 for all i, so that K*" < K¥» = K¥ = k. Thus, let
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xeHP ,sothat Ax = x QI+ I ® x + X% .x ® x; where the ;x, x; are in
HY for i > 3. For ae K" and b € K, we then have x(ab) = x(a)b + ax(b).
Iterating, we have x(a") = na"~'x(a). In particular, x(a”) = 0 for all a € K,
x € HY,. Thus, (K#)?» = K#i+1 for all i and K*" < K¥» = k. Thus, K/k is
radical for H(K/k) coradical. []

5.3.21 Theorem. let K:k < oco. Then Kk is normal if and only if
H(K]|k) is conormal. If K/k is normal, then K = K, K;,q (internal tensor
product of k-algebras) and H(K/k) = Hg, H,.s (internal tensor product of
k-algebras) where

1. Kga/k is Galois and Hg,, is a co Galois subbiring of H(K/k) stabilizing
Kg,, such that x = x|, is an isomorphism from Hg,, to H(Kga/k);
2. K. .q/k is radical and H,,, is a coradical subbiring of H(K]k) stabilizing
K.aq such that y > y|, .. is an isomorphism from H,,4 to H(K;aq/k).

Proof. Suppose first that K/k is normal, so that K = Kgg K4 (internal
tensor product of k-algebras). Let H be the k-span of the set {x ® y | xe
H(Kga/k) and y € H(K,,4/k)} where x ® y denotes the element of End, K
such that (x ® y)(a ® b) = x(a)y(d) for ae Kg,,, b € K,.q. Then H is a K-
subring of End,, K. For H is clearly a subring of End, K and, for a, b € K with
a € Kga1, b€ K,g and x @ y € H with x € H(Kga/k), y € H(K,a4/k), we have
(@)(x ® y) = (ax) ® (by) € H, so that H is a K-subspace of End, K. If
x € H(Kga/k) and Ax = 3;,x g, X1, and if y € H(Kyoa/k) and Ay =
271V Qe Vs» then it is easily verified that A(x ® y) = >, (x ®,)) Qx
(x; ® y;). 1t follows that H is a K-subbiring of End, K. Since K#&/® = | =
K¥, we have H(K/k) = H, by 5.3.12, so that H(K/k) = Hga H, a4 (internal
tensor product of k-algebras) where Hg, = {x ® I'| x € H(Kga /k)} and
Hioa = {I® y | y € H(K;aafk)}- It is clear from 5.3.20 that Hg,, is a co Galois
subbiring of H(K/k) and that H,,, is a coradical subbiring of H(K/k).

Suppose, conversely, that H = H(K/k) is conormal, so that H = Hg, H,.4
(internal tensor product of k-algebras). Let Kg,; = K¥raa and K,,q = K¥cs1,
and note-that KHs. = H(K/K,s) and KH,,q = H(K/Kga) by 5.3.12 (see
E.5.5). Then K/K,,q4 is radical and K/K,,4 is Galois by 5.3.20 (see E.5.5), and
K/Kg1K,aq is Galois and radical. Thus, K = Kg, K;.4. Next, note that Kg,,
and K., are stable under H,,q and Hg,, respectively, since the elements of
Hg,, commute with the elements of H,.4 (see A.2). It follows that (Kg,,) Fes1
KHear N KHrea = K¥ = k and (K,a9)"rea © K¥ = k. Thus, Kg,/k is Galois
and K,.q/k is radical (see E.5.5). Thus, K is normal over k. []

E.5 Exercises to Chapter 5
E.5.1. Prove that for any field extension K/k, End, K is a K-subring of K.
If K|k is finite dimensional, show that (End, K):K = K:k.

E.5.2. Verify that if G is a group of automorphisms of K, then the K-span
K[G] of G is a K-subring of End K such that K¥¢! = K6,
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E.5.3. Prove the coassociativity of A and coidentity of ¢ in the proof of
5.3.8 using 5.3.7 and 5.3.5.

E.5.4. Let K/k be a field extension, £’ a subfield of K containing k. Let C be
a k;-subspace of H(KJk) such that a k'-basis for C is a K-basis for KC.
Suppose furthermore that «(C) = k&’ and that for each x € C, there exist
&, x; € C such that Ax = 3; ;x @ x;. Show that there exist mappings
Ac: C— C Ry C, ec: C— k' with respect to which C is a k’-coalgebra such
that Acx = 3, ;x ®, x; with x, ;x, x; € C if and only if x(ab) = 3, ;x(a)x,(b),
for all a, b € K and ¢c(x) for x € C. Show that KC is a K-subcoalgebra of
H(K/k).

E.5.5. Let H be a subbiring of End K. Show that KH is a subbiring of End K
and

(a) H is coradical if and only if KH is coradical;
(b) KH is co Galois if H is co Galois;
(c) KH is conormal if H is conormal.

E.5.6. Let D be a nonzero derivation of a field K of characteristic p > 0
such that D = D?. Let = be the prime field of K.

(a) Show that K = 3., K; (direct sum of additive groups) where K, =
{xe K| D(x) = ix} for i e m.
(b) Show that K? = K, is a subfield of K and all the K| (i € ) are KP~
subspaces of K.
(c) Show that the KP-span KK, of K; and K is K, for i, j e .
(d) Show that K = K?(x) and the K; (i e =) are the K°x' (i =0, 1, ...,
p — 1) for any x € K; — {0}.
E.5.7. Let K/k be a (possibly infinite dimensional) field extension, let
Dy, ..., D,eDer, K and let x4, ..., x, be nonzero elements of K such that
Dy(x,) = 8,x;for 1 < i,j < n. Show that there is a linear combination D of
D,,..., D, over K? such that K:KP? > p" by proving the following.

(a) The restrictions #;,...,t, of Dy,..., D,"to L = K?(x, ..., x,) are
derivations of the finite dimensional extension L of /= K?,
X1, ..., X, is a p-basis for L{l and L:1 = p".

(b) The lspan T of t,, .. ., t, is a diagonalizable /-subspace of Der; L and
contains an element ¢ such that L! = /.

(c) The I-span S of ¢, t?, ¢t?*, ... is T'itself. (Hint: Use 5.2.5 and 5.2.6 and

/ observe that LS = LT = Der, L).

(d) K:K? > p"for any linear combination D of D, ..., D, over K? such
that D|, = ¢. (Hint: The K?-span of D, D?, D** ... contains ele-
ments Dy, ..., D, of Der, K such that Dj|, = #, by part (c). The
equations Dj(x;) = 8;;x; imply that the x,, ..., x, are p-independent
over KP.) _

E.5.8 (Gerstenhaber). Let K be a field, & a finite dimensional K-subspace
of Der K such that D? € 2 for all D € 2. Let K2 be the subfield of constants
K? = {xe K| D(x) =0 for De2}. Show that K:K? = p?*X and 2 =
Derz2 K by proving the following.
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(@ For De2 and E= D* — D, KE = KP(x) and x? € K? for some
x € KE, where KP denotes the subfield {y € K| D(») = 0}. (Use the
earlier exercise E.5.6.)

(b) For each D € 2, there exists a sequence Dy, D, ..., D, of elements
of 2 and a sequence x,, ..., x, of nonzero elements of K such that
KPi+1 = KP(x;) for 1 <i<n-1, and D,» — D, = 0. (Hint:
Choose x; such that D(x;) # 0 and replace D by a multiple D, such
that D;(x,) = x,;. Then choose x, such that (D,? — D,;)(xz) # 0 and
let D, be a multiple of D, — D, such that Dy(x;) = x,, noting that
Dy(x;) = 0 so that D, and D, are linearly independent over K.
Continue this process, showing that it must terminate with D,? —
D, = 0 for some n < 2:K such that K:KP < p")

(c) Show that K:K? < p2% for D € 9. (Use part (b).)

(d) Show that for any element De 2 such that K:KP is maximal,
K:KP = K:K?. (Hint: Consider the sequences xi,...,x, and
D,, ..., D, constructed in part (b). Suppose that KP? 2 K2, so that
there exists y € KP and E € & such that E(y) # 0. Since Dy(x;) = 0
for j < i and Di(x;) = x;, E can be chosen such that E(x;) = 0 for
1 <i<nand E(y) = y. Show, using E.5.7, that for some linear
combination F of the D; (1 < i < n) and E over K, K:K*¥ > K:K?,
a contradiction.)

(¢) Show that K:K? < pZ°k,

(f) Show that 2 = Derx2 K and K2 = p?X, (Hint: Compare the
dimensions of K over K2 and Derg2 K over K.)

E.5.9 (Gerstenhaber and Zaromp). Let Dy, ..., D, be commuting deriva-
tions of a radical extension K/k which are linearly independent over k. Prove
the following.

(a) Dy,..., D, are linearly independent over K.

(b) K:k = n.

(c) In order that K:k = n, it is necessary and sufficient that D;? be in the

k-span of Dy,..., D, forl < i < n.

E.5.10 (Hochschild). Show that for DeDerK and aeKX, (aD)f =
bD? + ¢D for suitable b, c € K.

E.5.11. Let H be a k’subbiring of H(K/k) and let £’ be a subfield of K con-
taining k such that &’ is stable under H and k’'¥ = k. Show that if H is
coradical/co Galois/conormal, then k'/k is radical/Galois/normal.



6 Tori and the structure of radical extensions

In this chapter, we enter into a detailed study of the biring H(K/k) of a
field extension K/k in terms of its toral subbirings (see 6.2.3). In 6.1, we define
the notion of torus and develop basic properties of tori. In 6.2, we discuss the
diagonalizable toral subbirings of H(K/k) and show that they correspond to
certain tensor product decompositions of K. In 6.3, we study the coradical
toral subbirings of H(K/k). These are the toral subbirings of H(K/k) for
which the corresponding extension K/K7 is radical (see 6.3.2), and we ac-
cordingly restrict ourselves to the case of radical extensions K/k. In this case,
a toral subbiring T can be studied inductively by considering a filtration
T = Ug T, (see 5.3.17) and T can be studied by comparing T with a diagonal-
izable toral subbiring T of an extension K/k obtained from K/k by ascent to
the separable closure of k (see 6.3.4). Using these methods for studying a
toral subbiring T of H(K/k), we prove that the centralizer H(K/k)” of*T in
H(KJk) is a K"-subbiring of H(K[k) and H(KJ/k) = KH(K[k)T (see 6.3.11),
so that the entire structure of H(K/k) is determined by the structure of
H(K[k)T and its action on K. In 6.4, we discuss the use of toral subbirings in
studying the structure of radical field extensions and generalize the theorem
of Jacobson on the finitude of the dimension of an extension K/K? where &
is a finite dimensional K-sub Lie ring of Der K.

6.1 Tori

Let k be a field of exponent characteristic p and prime field =, and let ¥ be
a finite dimensional vector space over k.

6.1.1 Definition. A linear transformation ¢ of V is semisimple if the
minimum polynomial of 7 is the product of distinct irreducible separable
polynomials over k.

6.1.2 Definition. A splitting field of a set T of linear transformations of
V is a splitting field of the set of minimum polynomials of the elements of T.

6.1.3 Definition. 1f L/k is an extension field of k and ¢ a linear trans-
formation of the k-vector space V, then ¢, is the linear transformation of the
L-vector space V, =L ®;, V such that t;(a ®.v) = a ®; t(v) for acL,
veVl.

6.1.4 Definition. A linear transformation ¢ on V is diagonalizable if V'
has a basis with respect to which the matrix of ¢ is diagonal. A set T of linear
transformations on V is diagonalizable if V has a basis with respect to which
the matrix of ¢ is diagonal for every t € T.
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6.1.5 Proposition. Let ¢ be a linear transformation of ¥ and let L/k be
a splitting field of ¢. Then ¢ is semisimple if and only if L/k is Galois and z;,
is diagonalizable on V5.

Proof. 1If t is semisimple, then L/k is Galois (see 2.3.12) and the mini-
mum polynomial of ¢, is a product of distinct linear factors X — a;, whence ¢,
is diagonalizable on ¥;. Conversely, suppose that L/k is Galois and 7,
diagonalizable on V. Then the minimum polynomial of ¢ is a product of
distinct irreducible separable polynomials over & and ¢ is semisimple. [

6.1.6 Proposition. Letp > 1 and let ¢ be a linear transformation of V.
Then #** is semisimple for some e.

Proof. Let L/k be a splitting field of 7 and let the eigenvalues of 7, on V,
beay, ..., a, Choose e such that (s,)** is diagonalizable on ¥ (see E.6.1) and
such that a,,...,a,” are separable over k (see 2.2.4). Letting L' =
k(a,*, ..., a,”), the splitting field of #** is the Galois extension L'/k and
(7). is diagonalizable on V.. Thus, ¢*° is semisimple. []

6.1.7 Definition. A k-torus on V is a set T of pairwise commuting
semisimple linear transformations of ¥ such that as + bte T and t? € T for
alla,bek,s teT.

For any set S of pairwise commuting semisimple linear transformations of
V, the k-span <S>, of the set {s*"| e > 0, s S} |J{I} is a k-torus on V
containing S and the identity 7 (see E.6.2). Obviously, <S>, is diagonalizable
on Vif and only if S is diagonalizable on V.

6.1.8 Proposition. The splitting field L/k of a k-torus 7 on V is a finite
dimensional Galois extension and the L-span T, of {t, | ¢ € T} is a diagonal-
izable L-torus on V7.

Proof. Lett,,..., 1, be a basis for T and let L/k be a splitting field for
{t1,..., tz}. Then Ljk is a finite dimensional Galois extension (see 6.1.5).
Since the #,, (t € T) commute pairwise and are diagonalizable on V;, T is a
diagonalizable L-torus on ¥V, (see E.6.2). []

6.1.9 Definition. For any set T of linear transformations of ¥ and for
any function a: T—k, V(T) = {ve V| t(v) = «(t)v for all 1 € T}.

6.1.10 Proposition. Let T be a k-torus on V and let T* be the k-dual
space of T. Then the following statements are equivalent:

1. every element of T is diagonalizable on V; -
2. Tis diagonalizable on V;
3. V= e Vo(T) (direct).

Proof. See E.6.2. [

6.1.11 Definition. Let T be a k-toruson V. Then T, = {te T | t* = 1}.
Note that T, is a m-subspace of 7.
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6.1.12 Proposition. let p > 1 and let T be a k-torus on V. Then
V = Ssers Vo(T,) (direct) where T, is the m-dual space of T,.

Proof. Since each ¢ € T, satisfies t* — ¢ = 0, the minimum polynomials
of the elements of T, are divisors of the separable polynomial X? — X =
[Tiex (X — ©). Thus, each ¢ € T, is diagonalizable on V with all eigenvalues
in 7. It follows that V' = 3 .7. V(T,) (direct). [

6.1.13 Theorem. Letp > 1. Then a k-torus T on V is diagonalizable on
V if and only if T is the k-span of T,.

Proof. One direction is clear from 6.1.12. For the other, suppose that
T is diagonalizable on V, so that V= J,.g Vo(T) (direct) where R =
{« e T*| V(T) # {0}}. Since R separates the points of T, R contains a basis
oy, ..., a, for T* Lett,...,t, be a dual basis for 7. Then ayt;) = §,, and
a(t?) = aft)? = 8 for all i, j. Thus, e (t;?) = «;(2;) for all i, j. Since the «,
separate the points of T, it follows that #,? = ¢, for all i, so that T is the k-span
of T,. [

6.2 Diagonalizable toral k-subbirings of H(K/k)

Let K/k be a finite dimensional field extension, and let p and = denote the
exponent characteristic and prime subfield of & respectively.

6.2.1 Proposition. Let T be a diagonalizable k-torus on K. Then a
k-basis for T is a K-basis for KT (K-span of T).

Proof. We have K = X ,cr: K,(T) (direct) where T* is the k-dual space
of T. Since R = {a € T* | K,(T) # {0}} separates the points of T, Rcontains
a basis «;,..., «, for T*. Let t,,..., t, be a dual basis for T. Taking x; €
K, —{0}for 1 <i < n, we have t,(x)) = aj(t)x; = dyx,for1 < i j<n It
follows easily that the #; are K-independent, so that ¢,, ..., ¢, is a K-basis for
KT. [

The reader should note that in 8.2.1 the assumption that T be diagonal-
izable cannot be dropped (see E.6.1) except when K/k is radical (see 6.3).

It is convenient to introduce now the following counterpart of definitions
5.3.1 and 5.3.9.

6.2.2 Definition. A subcoring of H(K) is a subset C of H(K) containing
I such that for each x € C, there exist ;x, x; € C such that Ax = 3, ;x Q& x;
and such that K, = ¢(C) is a subfield of K, C is a K¢ -subspace of H(K) and
a Kq-basis for C is a K-basis for KC (K-span of C). A subcoring[k-subcoring
of H(K]k) is a subcoring C of H(K) contained in H(K/k) such that K, > k/
K = k. A k'subcoring of H(K) is a subcoring C of H(K) such that K, = k',
for any subfield k£’ of XK.

If C is a subcoring of H(K), then Ay: C— C g, C and e;: C— K are
defined by Acx = 3 :x g, x; where the ,x, x; are elements of C such that
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Ax = 21X Qg x; and eg(x) = &(x) for x € C (see E.5.4), and C together with
A and e is a K-coalgebra in the sense of C.1.

6.2.3 Definition. A toral k-subbiring/k-subcoring of H(KJk) is a k-
subbiring/k-subcoring T of H(K/k) which is a k-torus on K.

For a diagonalizable k-torus 7 on K/k containing I to be a toral k-
subcoring of H ({(/k), it is necessary and sufficient that &(7") < k and for each
t €T, there exist ;f, t; € T such that At = 3, it Q ¢, (see 6.2.1).

6.2.4 Definition. Let T be a diagonalizable toral k-subcoring of
H(Kk). Then G(T) = {KT) | « € T*, K(T) # {0}}.

Let T be a diagonalizable k-subcoring on K and let 0 # x € K,(T) € G(T),
0 # y e Ky(T) € G(T). Then

(09) = 30C0) = (3 ef(®)) sy forseT,
i i

Since xy # 0, >; «(;2)B(2,) is independent of the particular representation of

At as At = 3t @ t;, and we denote 3; a;2)B(t) = (« * B)(z). We then have

K(TYKy(T) © Koupg(T) and Koup(T) € G(T). It follows that G(T') is a splitting

of K[k in the sense of the following definition.

6.2.5 Definition. A splitting of K/k is a (necessarily finite) collection G
of nonzero k-subspaces U, V- - - of K'such that K = 5. U (direct) and such
that for each pair of elements U, V e G, there exists We G such that W
contains the k-span UV of {uv |uec U,ve V}.

6.2.6 Proposition. Let G be a splitting of K/k. Then UV e G for U,
Ve G and G together with the binary composition UV is a group. The
identity K¢ of G is a subfield of K containing k, the elements of G are one-
dimensional K%-subspaces of K and K: K¢ = G:1 (order of G).

Proof. Let U, VeG. Then there exists precisely one W e G such that
UVeW. We.-denote Wby W= Uo V. Fixing Ve G and ve V — {0}, we
have K = Kv = Jy.e Uv (direct) © Sy Uo V' (direct) where Uv =
{uv | ue U} for Ue G. It follows that Uo V< Up < UV < U V, so that
UoV = Uv = UV for all UeG. It also follows that G = {UV | U € G} for
each Ve G. It is clear that the binary composition UV is associative and
commutative. Since G is finite and right translations are surjective, they are
bijective, so that the cancellation law UV = U'V = U = U’ holds in G.
The powers V, V% .. cannot all be distinct and we choose 1 < m < n such
that ¥™ = V'™ Cancelling on the right, we have ¥V = V4¢+*1 = V'V for some
d > 1. Thus, UV = UVV* for Ue G. Cancelling ¥, we have U = UV for
U e G, so that V¢ = E is an identity in G. Moreover, V¢~V = E so that V
has inverse ¥¢~*. Thus, G is a group. Letting K¢ be the identity element of G
and u € K¢ — {0}, we have K°K¢ = K¢ and K¢ = K%. Since u € K, we
have 1 € K¢, whence K¢ is a finite dimensional k-subspace of K containing k
and closed under multiplication. Thus, K¢ is a subfield of K. For V € G, we
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have V = K¢V = K% for veV — {0}, so that V:K® = 1. Since K =
Svee V (direct), it follows that K: K¢ = G:1. []

Let G be a splitting of K/k and let T be the k-dual space (kG)* of the group
k-algebra kG of G (see A.1). For s, t € T, let st be the element of T such that
(s1)(g) = s(g)t(g) for ge G. For t € T, let Ayt be the element of T ®,. T such
that Agt = 3, it ®, ¢, if and only if t(gh) = 3, #(g)t,(h) for g, h € G and let
eq(t) = t(e) where e = K€ is the identity element of G (see B.1). For t €T,
let 7 be the element of H(K/k) such that i(x) = ¢(U)x for xe U and U€eG.

6.2.7 Definition. T(G) = {i| t € (kG)*}.

Note that st = 57, Agt = 5.t @ t; implies that AF = > & ®xf and
eq(t) = &(f) for all s, t € (kG)*. It follows that T = T'(G) is a diagonalizable
toral k-subbiring of H(K/k). In fact, letting §: T — k be defined by g(7) =
t(g) for teT, ge G, one sees that K = . K3(T) and Ky(T) = U for
g=UegG, since K(T) ={xeK|[i(x)=g@)x = t(g)x = t(U)x for all
feT} = Ufor g = UeG. It is clear from this that G(T'(G)) = G.

6.2.8 Definition. For T < End K, <T is the subring of End K gener-
ated by T.

6.2.9 Theorem. T(G(T)) =<T) for any diagonalizable toral k-
subcoring T of H(K/k). The set T of diagonalizable toral k-subbirings of
H(K[k) is mapped bijectively to the set G of splittings of K/k by the mapping
T+~ G(T), the inverse being the mapping G — T(G).

Proof. Let T be a diagonalizable toral k-subcoring of H(K/k) and let
teT. Then the element ¢’ of (kG(T))* such that t'(g) = «(t) for g =
K. (T) € G(T) satisfies the equations #'(x) = t'(g)x = «(t)x = t(x) for xeg
and g = K(T) € G(T). Thus, ¢t = ' € T(G(T)). It follows that T < T(G(T)),
whence <T') < T(G(T)). Moreover, GKT)) = G(T) = G(T(G(T))), so that
K™ = KTC Tt follows from the Jacobson-Bourbaki Correspondence
Theorem that K(T') = KT (G(T)). But then

(T>:k = K(T>:K = KT(G(T)):K = T(G(T)):k,

by 6.2.1. It follows that <7'> = T(G(T)). In particular, T = T(G(T)) for
T eT. Since we have seen that G = G(T(G)) for Ge G, T +— G(T) maps T
bijectively to G, the inverse mapping being G — T(G). [

We describe now the connection between splittings of K/k (and therefore
diagonalizable toral k-subcoalgebras of H(K/k)) and tensor product de-
compositions of K/k.

6.2.10 Proposition. Let G be a splitting of K/k, let g,, ..., g, be a basis
for G as finite Abelian group and let x; be a nonzero element of g, for 1 <
i < n. Then K = K%x,) - - - K%x,) (internal tensor product of K%algebras)
and x;% € K¢ where ¢, is the order of g; for 1 < i < n. Conversely, if K >
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k' >k and K = k'(xy)---k'(x,) (internal tensor product of k’-algebras)
where x; € K, ¢; > Oand x;*€k for 1 < i < n, then

G={kxt - x/*|0<fi<eg~—1forl <i<n}
is a splitting for K/k withbasisg; = k'xy, ..., g, = k'x,andidentity K¢ = k’.

Proof. The x,"1-- - x,7» form a basis for K over K¢ since Kx,f1- .. x,/» =
g/t g/rand K = 5 ¢ g (direct). []

6.2.11 Theorem. Let p > 1 and let T be a diagonalizable toral k-
subcoring/k-subbiring of H(K/k). Then T, is a w-subcoring/=-subbiring of
H(K) and H(K/KT) = K{T) = K{T,>|H(K|KT) = KT = KT,.

Proof. Suppose first that T is a diagonalizable toral k-subbiring of
H(K/K), so that T = T(G) = {7 | t € (kG)*} for some splitting G of K/k. Then
T, = {t| t € (@G)*} where (7G)* = {t € (kG)* | t(wG) < =}. It follows that a
m-basis for T, is a k-basis for T and that &(T,) = =. Next, suppose only that T
is a diagonalizable toral k-subcoring of H(K/k). Then a n-basis for (T, is a
k-basis for (T) and «(T,>) = =. Since T = kT, (see 8.1.13), it follows that
a m-basis for T, is a k-basis for T and (7)) = =. Let ¢4, .. ., ¢, be a w-basis for
T, and let t € T,. Then At = 3%t ® t; where 4, ..., .t are elements of T.
It follows from this that

n n n

Zit Quti = At = At? = Zitp Rt = Zttp R s

1 1 1
(see E.8.2). Thus, ;t = ;#?and ;t € T, for 1 < i < n. Thus, T, is a w-subcoring
of H(K). That H(K/K™) = K(T> = K{(T,y follows from the Jacobson-
Bourbaki Cérrespondence Theorem, since KT = KTx = K<™ = K<Ta> =
K¥<T> = K¥<T> If T is closed under multiplication, then T, is closed under
multiplication and T = <T), T, = {T>. 1[I

6.3 Coradical toral k-subcorings of H(K/k)
We begin with a short discussion about subcorings of H(K).

6.3.1 Definition. Let C be a subcoring of H(K). Then a filtration for C
is a sequence C; of K.-subspaces such that Cy = K.I, C; < C;.; and each
element x of C?,, is primitive modulo C; for all i. If C has a filtration, then C
is coradical (see 5.3.17, 5.3.18).

6.3.2 Theorem. Let C be a subcoring of H(K) such that C:K; < oo.
Then C is coradical if and only if K** < K¢ for some n.

Proof. Suppose first that C is coradical and let C; be a filtration for C.
Then C = |J§ C, for some n. As in the proof of 5.3.20, we have K = K and
(K°)? = KCu1 for all i, so that K*" = K% = KC.

Suppose, conversely, that K*" < K°. Let K = {4 | a € K} where 4: KC —
K is defined by d(x) = x(a) for x € KC. Since K separates the points of KC,
the K-dual space 4 of KCis A = KK (K-span of K). Since KCis a K-coalgebra,
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A has a unique K-algebra product fg and identity 1, such that (fg)(x) =
2 f(x)g(x;) and 1,(f) = f(Q) for f, g€ A and x € KC. Letting a, b € K and

x € KC, we have (db(x) = 5, 4(x)b(x)) = 3::x(a)x,(b) = x(ab) = (/JZ(X) and

1,x) = x(1) = 1(x). It follows that 46 = ab and 1, = 1, so that the mapping
a > dis a KC-algebra homomorphism from K into 4 with image K. The ideal
M = {57 ab, |m=1,a,beKforl <i<mand 37 ab, = 0} of A con-
sists of nilpotent elements, since a,*" € K¢ for 1 < i < m and

m . m A
(z aibi)”" = z a?"b?" = etc. =0
1 1

as in the proof of 5.3.30. Since 4 = K1, + M, A is a split local K-algebra
(see A.3) and KC is coradical by C.4. To see that C is coradical, we consider
A" = {fe A|f(C) < K;}. Letting x,, ..., x; be a Ky-basis for C, x,, ..., x4
is a K-basis for KC and we let fi, . . ., f; be a dual basis for 4. Then clearly the
fi,.. .. faarein A" and f;, . . ., fy is a K-basis for 4’. Thus, A’ can be identi-
fied with the K -dual space of C. Clearly A’ is a subring of 4 and (fg)(x) =
> f(X)g(x), 14(x) = x(1) for x € C. To show that C is coradical, it therefore
suffices to show that A’ is a split local K -algebra (see C.4). For this, note that
M={fed|f(I)=0}and let M' ={fe A’ | f(I) =0} = A’ " M. Then
M’ is an ideal of A’ consisting of nilpotent elements and 4" = K;1, + M".
Thus, A4’ is split local and C is coradical. []

Suppose that T is a coradical toral k-subcoring of H(K/k) and let T; be a
filtration of T. Letting {S>, be the k-span of {s*" | e > 0,5€ S} for S <
H(K|k), we obtain a filtration <T;>, of <T), = T consisting of toral k-
subcorings of H(K/k) (see E.6.6). Thus, any coradical toral k-sdbcoring 7 of
H(K][k) has a p-filtration in the sense of the following definition.

6.3.3 Definition. A p-filtration for a toral k-subcoring T of H(K/k) is
filtration T for T such that 7;? < T; for all i.

Suppose next that K/k is a radical extension. We know that T = L ®, T
is a diagonalizable k-torus on K = L ®, K where L is the separable closure
of k in the algebraic closure Ky, = ka of Kand k = L ®, k (see 2.2.12 and
6.1.8). The extension L/k is Galois with Galois group G = Aut, L and K is a
radical field extension of k. For any k-vector space T, we let T = L ®, T and
regard T as k-vector space. For any K-vector space V, welet V = L ®, ¥V and
regard ¥ as K-vector space. Each element g of G induces k-linear mappings
(also denoted g for convenience) g: K — K, g:k — k, g:T— T, g:V — Vsuch
that g@ @ b) = g(@) @b (acL,beK), glaR b) =gla) @b (acL,bek),
ga®t)=gl@Qt(aecL,teT),gla®@v) =ga) Qv(acL,ve V). Inthis
way, G acts as a group of transformations of K, k, T and V. Moreover,
KS =K kS=k, TS = T and V¢ = V where we identify K and k ®; K,
kand k ®, k, Tand k ®, T, V and k ®, V. If K/k is finite dimensional, then
we can identify H(K/k) and H(K/k), since H(K[k) = End, K and H(K/k) =
End;, K (see E.6.3). Thus, G acts as a group of transformations on H(K/k) =




Coradical toral k-subcorings of H(K/k) 133

H(KJK) and H(K/k)® = HKK)® = H(K/k). Moreover, g(¥(@) = g(%)(g(@)
for x € H(K[k),ae Kand geG.

The importance of the next theorem is that it enables us to pass from a
toral k-subcoring T of H(K/k) to the diagonalizable (see 8.1.8) toral k-
subcoring T of H(K/k), study T and then transfer the conclusions about T to
T = T¥€. The passage from T to T is referred to as ascent, that from T to T
descent.

6.3.4 Theorem. Let K/k be a finite dimensional radical extension. Then
the set of toral k-subcorings/k-subbirings of H(K/k) is mapped bijectively to
the set of G-stable (necessarily diagonalizable) toral k-subcorings/k-sub-
birings df H(K[k) by the mapping T+ T, the inverse mapping being the
mapping T +> TC¢.If Tis a k-torus on K containing I such that &(7’) < k and
for each 7 e T there exist ;¢,#; €T such that At = >t Qx t;, then T is a
coradical toral k-subcoring of 7.

Proof: Let T be a k-torus on K containing I such that &(T") < k and for
each ¢ € T, there exist ;7, t; € T'such that At = 3 ;t Qg ;. Then T'is a diagonal-
izable k-torus on K containing I such that &(T') < k and for each ¢ € T, there
exist i, ;€ T such that At = 5, ®g t,. Thus, T is a toral k-subcoring of
H(KJk) (see 6.2.1 and 6.2.3). If t,, . . ., t, is a k-basis for T, then t,, ..., t,is a
k-basis for T, hence a K-basis for KT, hence a K-basis for KT. Thus, T is a
toral k-subcoring of H(K/k), and T is coradical by 6.3.2. Furthermore, T is
closed under products if T is closed under products. Suppose next that 7'is a
G-stable toral k-subcoring of H(K/k) and let T = T'¢. Then T is a k-form of
T since k = k€ (see 3.2.5). Clearly T contains I and we have t? € T = T¢ for
teT = TC Letting t € T, we have £(¢) € k and g(e(t)) = g(t(1)) = g(t)(g(1))
= t(1) = &(t) for g € G, so that &(¢) e k¢ = k. Thus, &(T) < k. Let t,, .. ., 1,
be a k-basis for T, hence a k-basis for T, hence a K-basis for K. For t € T,
there exist uniquely determined elements ,¢,...,,¢ of T such that Ar =
Dt ® . Since Dt @t = At = Agt) = Y, g(t) @ g(t) = >, 8Gt) @ t; so
that g(;¢) = ;¢ for g € G, so that we have ;e T = T%for 1 < i < n. Thus, T
is a toral k-subcoring of H(K/k). If Tis closed under products, thensois T. []

6.3.5 Definition, For S < H(K/k) and H < H(K/k), H® = {xe H |
sx = xs for all s € S} and (S is the subring of H(K/k) generated by S.

6.3.6 Proposition. Let K/k be a finite dimensional radical extension and
let S be a toral subcoring of H(K/k). Then H(K/K®)®* = K5(S> and every
semisimple element of K5{S> over k is contained in {S>.

Proof. Let T = K5(S). Then K® = KT, H(K/KS)®* = H(K/K")T and T
is a toral KT-subbiring of H(K/KT) (see 8.3.4). We have H(K/KT) = KT and
K:KT = H(K|KT):K = T:K7” (see 8.2.11). Now T is a diagonalizable K7-
space of linear transformations of K/KT and T:K” = K:K". It follows by
linear algebra that H(K/K")* = T. Thus, H(K/KT)” = T, so that H(K/K)S
= K5(S. Since K5k is radical, (K5)p® < k and (K5{S>)** = (S for some
e. It follows that (S contains every semisimple element of K5(S> over k
(see E.6.5). [I
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6.3.7 Theorem. Let K/k be a finite dimensional radical extension and
let S and T be toral k-subcorings of H(K/k) such that S < T and every
element of 7° is primitive modulo S (see 5.3.16). Then TN SY> = {teT |
t(a) = ¢(t)a for all a € K5},

Proof. One direction is easy (see E.6.7). For the other, let e T° and
suppose that (@) = £(¢)a for all a € K5. Let

n n
A=Du@t=tQI+IRt+ Dt
1 3

where the ;z, ¢; are elements of S® = S N Kernel e for 3 < i < n. Forae K*
and b € K, we have

t(ab) = t(a)b + at(b) + i t(@1(b) = e(t)ab + at(b) + i e(;t)at,(b)

= a(i a(,t)ti)(b) = at(b),

so that e TN H(K/K®) = TN HK[KSY® = T n K5(S) (see 6.3.6). Since
t is semisimple, t € (S by 6.3.6. []

6.3.8 Theorem. Let K/k be a finite dimensional radical extension and
let S and T be diagonalizable toral k-subcorings of H(K/k) such that S < T
and every element of T° is primitive modulo S (see 5.3.16). Let R =
{a e T* | KAT) # {0}} and let RS = {a e R | K,5(T') # {0}} where K,5(T) =
KSN K/ (T)foraeR. ThenR® = {a e Ty | (« — &r)(t) = Oforte T, N {(SH}
where T¥ ={aeT*|aT,) < T,}. And K% = J,xs K, (T) (direct),
KS(TYKS(T) = K5,4(T) for o, B € R® and K,5(T) = K”a, for a, e K,° — {0}
and « € RS,

Proof. We have K = J,.gr K(T) (direct), K (T)Ky(T) = K,.5(T) for
a,BeR and K (T) = K7a, for a, € K(T) — {0} and 2 R (see 6.2.6 and
6.2.9). Since K* is a T-stable K7-subspace of K, it follows that

KS= > KST) and KS(T)=K(T)=K%a, foraeR"

aeRS

Moreover, R® = {a e R | (@ — &7)(t) = 0 for t € T N {S)}, since
a€ RS« KS5(T) # {0} < a, € K¥ < at)a, = 1(as) = ext)aq
forteTN{S) < (¢ —eg)(t) =0
for te TN SH.

Next, let o, BeRS. Letting teT°=TnNKernele and Ar=tQ1I +
I®t+ 33,t ®t, where the it, t; are elements of S° we have (a * B)(7) =

ma()B(t) = «(t) + B(t) + D& e(it)e(t;) = (« + B)(¢) + 0. It follows that
a*xf =a+ B — ep for «, B € R®. Since R® is a subset of T'; and « x $ RS
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for «, B € RS, it follows that RS — &7 = {a — &7 | « € RS} is a m-subspace of
T¥. Thus, RS — & = (RS — &7)'t where

RS —ep)t ={teT,| (¢« — er)(t) = 0 for « € RS}
={teT,|te H(K/K®)}
=T, NS> (see 6.3.6)

and (R® — e = (R® = en))* = (T, NSO ={BeT7}B(t) =0 for
teT, NS>} Thus, RS — e ={BeT}|B(t) =0 for teT,N{S)} and
RS =/{aeT,’f | (@ — ex)(t) =0forteT, NS>} [

6.3.9 Definition. For any k-subspaces H and T of H(K[k), we let
H(T) ={xeH|tx — xt = oft)x for all t € T} for « € T* (k-dual space of
T)and HT = H(T) = {xe H | tx = xt for all te T}.

6.3.10 Theorem. Let K/k be a finite dimensional radical extension and
let S and T be diagonalizable toral k-subcorings of H(K/k) such that S< T
and every element of 7° is primitive modulo S. Let H = H(K/k) and
HA(T) = H(T)n HS for «eT*. Let RS = {aecT*| K,5(T) +# {0}} and
note that @ *x 0 = « — ey for « € T* where 0 is the zero element of T* (see
6.3.8). Then HS = Y,.rs Hs\o (T) (direct), K,5(T)H,5(T) = H3,,(T) for
aeRS, BeR5x0and Hi,, = a,HT for «, € K, — {0} and « € RS,

Proof. For teT, let adt: H® — H* be the linear transformation of H*S
defined by adt(x) = tx — xtfor xe H® (see E.4.9). Thenadsadt = adtads for
s, te Tand adt® = (adt)? for t € T, so that adT = {adt | t € T} is a k-torus on
HS (see E.4.9). Since T is the k-span of T, and since ad(T,) < (adT),, adT is
the k-span of (adT), and adT is diagonalizable on HS (see 6.1.13). Letting
Q ={BeT*| HST) # {0}}, we therefore have HS = >;.q H;5(T) (direct).
For ae K,5(T), x € H5(T), t e T® and

n
AM=2uQ@t=tRI+IQt+ )4t
i 3
where the ;z, ¢, are elements of S° for i > 3, we have

adt(ax) = t(ax) — axt = t(@)x + atx + i s(@x — axt
= t(a)x + a(adt(x)) + i 0

= oft)ax + B(t)ax + (2 a(it)B(t,))ax
= (a * B)(t)ax.

It follows easily that K,5(T)H(T) < Hs.,(T) for «, B € T*. In particular,
R B8 < Q for any B € Q, where R* x B = {a * B | a € R*} for B € T*. Next,
note that for any ¢ € T, N (S, we have 0 = adt(x) = B(t)x forallx € H,5(T),
so that B(t) = 0 for B Q. Thus, Q < RS — & = RS %0 (see 6.3.8). The
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number of elements in the sets RS, RS+ 0 and RS x B (B € Q) are the same,
since axB =a + B — ey for e €R5. Thus, RSB =Q = R¥% 0 for B Q,
and H® = 35,.gs HS,, (direct). Letting a, € K,5(T) — {0} and «€ RS, we
have
HS=aHS= > aHST)< D HLT)=HS
BERS*0 BERS»0

It follows that a, H;5(T) = HS,4(T), hence that K,5(T)H,5(T) = H3,,(T) for
all B e R® % 0. In particular, a,H” = a,H,5(T) = Hio(T). [

6.3.11 Theorem. Let K/k be a finite dimensional radical extension and
let 7 be any toral k-subcoring in H(K/k). Then H(K/k)T is a K7-subbiring of
H(K) and H(K/k) = KH(K[k)T (K-span of H(K[k)T).

Proof. Let H = H(K/k). We first consider the case in which T is diagon-
alizable. Since K/k is radical, T is coradical (see 6.3.2) and has a p-filtration T;
(see 6.3.3). We prove by induction on n that H7 = is a Ks-subbiring of H(K)
and H = KH*», which suffices since 7" = T, for some n. If n = 0, this is clear.
Next, let n > 0 and S = T,_,, and suppose that H*S is a KS-subbiring of
H(K) and H = KH5. Following the notation of 6.3.8 and 6.3.10 with T, in
the place of T, we have K¥ = >,.ps K™ra, (direct) and HS = J,.ps @, H ™
(direct), so that HT» is a K™-form of H*S as K*5-vector space (see 3.2.3 and
6.2.2). Since H* is a K5-form of H as K-vector space, it follows that H™» is a
K7n-form of H as K-vector space. Obviously, HT» is a subring of H(K). We
now let x € H and describe ;x, x; in HT» such that Ax = >, ;x ® x;. For this,
letay, ..., a, be a k-basis for K contained in |Jyers K (T,) and let x4, .. ., Xn
be the K-basis for H = End,, K such that x;(a;) = 84, (1 < i,j < m). One
sees easily that the K,(T,) (« € T¥) are stable under the x;, . . ., X, so that the
X1s - . ., X are elements of H 7. Since H7» is a KT»form of H, x;, ..., X, is a
KTn-basis for H™», Let x € HT» and let ;x, .. ., »x be elements of H such that
Ax = 5, x ® x;. Since H™» =« HS, we have xe€ HS. It follows that the
1%, ..., mX are elements of H® (see E.5.4). Let 1T, and At =t QI +
IQ®t+ 57t ®t, where the i, t; are elements of S° for i = 3. Then

t(x(ba)) = 2 t(x(B)x @) = t(x(byay)
= t(x(Ba, + x(B)t(a) + D 1 (x(b))t(a)
and
1 (x(ba)) = x(t(ba)) = x(t(Ba) + x(bt(a)) + (Z J(b)t,(ai))

2 xt(b)xfa) + ; AB)xit(@) + g it (B)x;ta)

xt(B)a; + x(B)t(@) + 2, tx(b)t(ay)

forallbe Kand 1 < i < m, since x;t = tx;, X;;t = ,#x;and ;x,t = ,t;x-for all
Jj» r. It follows that t;x = xtforallte T,and 1 < i < m. Thus, the ;1x, ..., nx

»
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are elements of H™» as desired. It remains only to show that (H 7s) < KTn,
For this, let xe H%s, t € T, and b € K. Then

t(x(D)B) = 2, st (x(HB) = ¥ 22 (V)1(b)

i i

\ = Z x(Dut (Dt(B) = x(1)t(b)

since 4¢(1) € k for all i. Thus, x(1) € K7» for x € H, so that e(HT) < KT,
We have now shown that H 7« is a K Ts-subbiring of H(K) for all n, hence that
H7 is a K™-subbiring of H(K) for any diagonalizable toral k-subcoring T of
H(K[k).

We finally drop the assumption that T be diagonalizable. Following the
terminology of 6.3.4, T is a diagonalizable k-subcoring of H = H(K/k), HT
is therefore a K™-subbiring of H(K) and H = KH. Since HT = (H?)¢ and
KT = (K7)° where G = Aut, L = Aut, k = Auty K, HT is a K™-form of
HT as K™-space. Consequently, HT is a K”-form of H as K-space, hence a
K™-form of H as K-space. Let xy, ..., x,, be a K -basis for H7, hence a K-
basis for H, hence a K-basis for H. Let x € HT and choose .x, ..., ,x € HT
such that Ax = 3, x ® x,. For g € G, we then have

2.x®@x = Ax = Ag(x) = > g(x) @ g(x) = > g(x) @ x,
i i i

(see E.6.8). It follows that ;x = g(;x) for g € G, so that ;x € (HT)S = HT for
1 < i < m. Next note that e(H?) < «(H?)n K< KT N K = KT. Since HT
is a subring of H(K); we have therefore proved that H7 is a K7-subbiring of
H(K)and H = KH?. []

6.4 Radical extensions .

The theory of toral subbirings developed thus far can be used in studying
the structure of radical field extensions. It is clear from 6.2.10 that a finite
dimensional radical field extension K/k splits as a tensor product over k of
simple extensions of & if and only if KT = k for some diagonalizable toral
k-subbiring T of H(K/k). For an arbitrary finite dimensional radical exten-
sion K/k and an arbitrary toral k-subbiring T of H(K/k), we have seen that
H(K[k)" is a K"-subbiring of H(KJk) and that H(K/k) = KH(K[k)" (see
6.3.11). Also, H(K/kT) = KT (see 6.2.11). Finally, the K7-biring H(KT/k) is
a homomorphic image of H(K/k)", as we show in 6.4.1. Thus, H(K/k) is
completely determined by the K7-subbiring H(K/k)” and its action on K,
H(K|KT) is completely determined by T and its action on K and H(K7/k) is
completely determined by H(K/k)” and its action on K7. This shows that
KJk-can be effectively studied by studying K/K7 in terms of T (see 6.2 and
6.3.4) and K”/k in terms of H(K]/k)". Since a nontrivial radical extension K/k
has some nonzero toral k-subbiring T (see E.6.9), these observations enable
one to study K/k inductively in terms of the proper subextensions K/K” and
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K7 |k. This approach to studying radical extensions is illustrated in the proof
of 6.4.2.

In the extreme case where a finite dimensional radical extension K/k has
a toral k-subbiring T such that KT = k, we know from 6.2.10 and 6.3.4 that
K is a tensor product of certain simple extensions of k where K = L @, K,
% = L ®, k and L is the separable closure of k. Not every finite dimensional
radical extension K/k has this property (see E.6.30). Thus not every finite
dimensional radical extension K/k has a toral k-subbiring T such that K T =k
It is not known whether every finite dimensional radical extension Kk has
some k-subbiring H, such that K¥x = k, hence such that H(K/k) = KH,. It
has been shown by Moss Sweedler, however, that there exists a K-measuring
k-bialgebra H,(K) such that K¥«® = k. (See E.6.18, E.6.22))

We now compare the K7- birings H(K”/k) and H (KK,

6.4.1 Theorem. Let K/k be a finite dimensional radical extension and
let T be a toral k-subbiring of H(K/k). Then K7 is stable under H (K/k)" and
the restriction mapping x —> x| 7 from H(K[k)" to H(K"|k) is a surjective
homomorphism of k-algebras and K”-coalgebras.

Proof. It is clear that KT is stable under H(K/k)T and that x > x|g7 is
a K-linear k-algebra homomorphism. Let Agr be the coproduct for H(K/k)T
as KT-coalgebra. Then if x € H(K/k)" and Agr(x) = D x Qg X;, We have
x(ab) = 3 x(a)x(b) for all a, b € K. Thus x|g(ab) = 3 ix|x7(a)x;| x7(b) for
all a,beKT, so that A(x|gr) = 2y .x|x7 Qk” x| 7. Thus, x> x[g7 is a
KT-coalgebra homomorphism. To show that X = x|gr is surjective from
H(KJk)" to H(KT/k), let H be the subbiring H = {x|gr | x € H(K[k)"} of
H(K?k). Since H(K[k) = KH(K[k)", we have KH®T — | 1t follows that
(KT)H = k, so that H = H(K"[k), by 5.3.12. [ .

We conclude with a generalization of the theorem of Jacobson which
states that if K is a field and @ a K-sub Lie ring of Der K which is finite
dimensional over K, then K/K? is finite dimensional (see 5.2). The proof
illustrates how the foregoing ideas can be applied to the study of radical
extensions.

6.4.2 Theorem. Let K be a field and let C be a coradical K-subcoring of
H(K) such that xy — yx e C and x” € C for all x, y € C. Then if C is finite
dimensional over K, K is finite dimensional over K°.

Proof. Supposé that C:K < oo and let K°C = k. Since C is coradical,
K]k is radical (see 6.3.2). Let L be the separable closure of k, K=L®K
F=L®.k C=L®,C. Then Kis a field, C is a coradical K-subcoring of
H(K) such that [x, y] = xy — yxe Cand x* € Cforall x, y € C (see E.6.31),
C:K < o and KC = k. To show that Kk is finite dimensional, it suffices to
show that K/k is finite dimensional. Thus, we may replace K/k by K|k, that is,
we may suppose that k is separably closed.

We proceed now by induction on the dimension of C over K If C = {0},
then the theorem is certainly true for C. Suppose next that C # {0} and that
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the theorem is true for dimensions less than the dimension of C over K. Since
C is nonzero and coradical, C has a nonzero primitive element x. Since
Ax = x ® I + I ® x, we have x € Der K. Choose a € K such that x(a) # 0
and let y = ax(a)~x, so that y(a) = a. Then y € Der K. Since y € C and
C:K < oo, the K-sub Lie ring @ of Der K generated by y is finite dimensional
over K and the extension K/KZ corresponding to 2 under the Jacobson
Differential Correspondence is finite dimensional (see 5.2). Let ¥’ = K2 and
choose e such that y*° is a semisimple linear transformation of K/k' (see
6.1.6). Note that ¢t = y*° is nonzero, since t(a) = a # 0. Let T be the k’-span
of the powers ¢, t?, t**, . .. of #, so that T'is a k’-torus on the finite dimensional
vector space K over k'. Since k is separably closed, k' is separably closed.
Thus, T is diagonalizable over k' (see 6.1.8), so that T is the k’-span of
T,={teT |t? = t} (see 6.1.13). We now imitate some of the material in
6.3 in order to show that the centralizer CT= of T, in C is a KTs-form of C.
We have K = Socr K(T,) where R = T% (#-dual space of the w-space T)
(see 6.1.12). The set Q = {e € R | K,(T,) # {0}} is nonempty. One shows
easily that K (T)Ky(T,) < K,+45(T;) for «, BeR, since T, < Der K. It
follows that Q is closed under + and therefore that Q is a m-subspace of
R = T*. Since Q separates the points of Ty, it follows that Q = R and
K(T,) # 0 for all « € R. Moreover, we have K,(T,) = K"»x, for « € R and
%o € K(T,) — {0} (compare with 6.3.8). For u € C, let adu: C — C be defined
by adu(v) = [u, v] = uv — vu. Then adu is a =-linear transformation of C and
(adu)® = adu? for all u € C (see E.4.9). Since t* = t for t € T, it follows that
(adt)? = adt for t e T,. Since the elements of adT, commute pairwise, the
elements of adT, = {adt | t € T,} commute pairwise. It follows easily from
6.1.12 that C = S;cr Cs(T,) (direct) where Cyx(T,) = {v € C | adt(v) = B(t)v
forall 7€ T,} for Be R. Let o, Be R, x, € K,(T,) — {0} and v; € C4(T). Then
X05 € Cy 4 5(T), for we have

[t’ xavti] = t(xzzvﬁ) - (xavﬂ)t = t(xa)vﬁ + xo:tUB - xavﬁt
= t(xa)vﬁ + x4[t, vﬁ] = a(t)xotvﬁ + xaﬁ(t)vﬂ

(o« + B)(1)Xatp.

It follows easily that x,Cy(Ty) = Cus(T:) for all o,BeR, thus that
C4(T,) # {0} for all B € R, thus that Cy(T,) = x,C7= for all B R, thus that
CTx is a K s-form of C as vector space over K (compare with 6.3.10). One
now shows, as in the proof of 6.3.11, that C7» is a KTs-subcoring of C such
that C = KC7=. Furthermore, we have [u,v]€C Tx and u? € CT= for all
u,ve CTs. Letting K’ = K7, the mapping f(@) = u|g. maps the K'-sub-
coring CT» of H(K) homomorphlcally to a K'-subcoring :

C’ = {ulg |ue C'}

of H(K') such that [y, v]e C' and u? e C’ for all u,ve C’ (compare with
6.4.1). Since T, = C7» N Derg. K, we have f(T,;) = 0. Thus,

C":K' < C%:K' = CT»:KT» = C:K.
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We may therefore apply the induction hypothesis to C’ and K’ and conclude
that K’ is finite dimensional over K’C’. Since K/K’ = K/K7» is finite dimen-
sional, it follows that K is finite dimensional over K’¢. But K'¢" = K¢,
since C = KCT= = KC'. Thus, K is finite dimensional over K€. []

E.6 Exercises to Chapter 6

E.6.1. Let ¢ be a linear transformation of a vector space ¥ over an algebrai-
cally closed field k of characteristic p > 0. Show that ¢** is diagonalizable for
some e. (Hint: Consider the Jordan Canonical Form.)

E.6.2. Show that if S is a set of pairwise commuting semisimple linear trans-
formations of a finite dimensional vector space V over a field k of charac-
teristic p > 0, then (S, (defined following 6.1.7) is a k-torus on V. Show
that {(S), is diagonalizable if every element of S is diagonalizable. (Hint:
The eigenspaces of any element s of S are invariant under S.)
E.6.3. Let K/k be a finite dimensional radical extension. Show that for any
separable algebraic extension L of k, there is a bijective k-linear mapping
from L ®; End, K to End ;g L ®; K mapping x ® T to (xid)) ® T for
xeL, Te End, K
E.6.4. Under what conditions on a finite dimensional extension K/k is KI
(K-span of I End; K) a k-torus? Show that the diagonalizability of T in
6.2.1 is essential.
E.6.5. Let V be a finite dimensional vector space over a field k of charac-
teristic p > 0. Let T be a k-subspace of Hom, ¥ consisting of pairwise com-
muting linear transformations of ¥V and suppose that t»eT for all teT.
Then any subspace S of T such that for each ¢ € T, t*° € S for some e contains
every semisimple element of T.
E.6.6. Verify that the (T}, following 6.3.2 are toral k-subcorings.
E.6.7. Let C be a subcoring of H(K/k) and let ¢t € C, a € K. Show that if
t(ab) = at(b) for all b € K, then t(a) = &(t)a.
E.6.8. Let K/k be a finite dimensional radical extension and let L/k be the
separable closure of k. Following the identifications and notation introduced
following 6.3.3 and letting g € Aut, L, x € H(K/k) = H(K/k), show that
Ax = 3; x ® x; if and only if Ag(x) = >, g(x) ® g(x)).
E.6.9. Show that if K/k is a radical extension of dimension greater than one,
then there is a nonzero diagonalizable toral k-subbiring in H(K/k).
E.6.10. Describe an algebraic field extension K[k which is radical, but
which does not satisfy the condition (); K?' < k.
E.6.11. A higher derivation of K|k is a sequence D = (D,, Dy, ..., D,) of
elements D, of End, K such that D, = I and Dy(ab) = 3, ;_,D(a)D,(b) for
all a,be K and 0 < s < m. Prove the following for any higher derivation
(Dy, . .., D) of K|k.

(a) The mapping a +> >F D/(a)X" is a k-homomorphism from K into the

k-algebra K[X] = K[X]/(X™K[X]), X being the coset X = X +
X"K[X].
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(b) The pth power mapping in K and in K[X] is a ring homomorphism.
(©) DJa?) = (D, ()" if p|r and D,(a") = 0 if pt+r. (Hint: Use parts (a)
and (b).)

E.6.12 (Sequence of Divided Powers). In a coalgebra C over k, a sequence
of divided powers is a sequence D,,..., D, of elements of C such that
AD; =35 ..,D® D, for 0 < s < m. Show that if D,, ..., D, is a sequence
of divided powers, then the k-span of D,, ..., D,, is a colocal cocommutative
subcoalgebra D of C and for any measuring representation f: D — End, K of
D on a field extension K/k mapping D, to I, the sequence f(Dy), f(Dy), ...,
f(Dy,) is a higher derivation on K.

E.6.13. Let K/k be a finite dimensional field extension and suppose that k
is the subfield of constants of the set of higher derivations of K over k, that
is, for each a € K — k, there exists a higher derivation D = (Dy, Dy, ..., D,)
such that D,(a@) # O for some i with 1 < i < m. Show that K/k is a radical
extension. (Hint: Show for a fixed higher derivation D = (D, D4, ..., D,)
that X is a radical extension of the field K = {ce K| Di(c) = 0 for 1 <
i < m} by showing that the K-span C of Dy, D,,..., D, is a coradical co-
local subcoring of H(K/k). Or simply analyze the proof of 5.3.20 and prove
directly that K/K? is radical).

E.6.14 (Sweedler). Let K/k be a finite dimensional field extension and
suppose that k is the subfield of constants of the set of higher derivations of
K/k. Show that K is the tensor product over k of simple extensions of k by
proving the following.

(a) Show thatif D = (D,, ..., D,) is a higher derivation of K/k, then the
D, map the subfield K?' = {x*' | x € K} into itself for i > 0. (Hint:
Use E.6.11.)

(b) The fields k and K*' are linearly disjoint in K over k N K?* for all
i > 0. (Hint: Suppose the contrary, and take linearly independent
elements ¢;,...,c, of k over kN K ?" and elements ay, . .., a; of K**
(not all zero) such that ¢,a; + ...+ ca; = 0. Do this in such a way
that ¢ is as small as possible. Note that all the g; are nonzero and that
a; can be taken to be 1. Take j such that a, ¢ k and choose a higher
derivation D = (D,, ..., D,) such that Dy(a;) # O for some i > 1.
Show that ¢;D;(a,) + --- + ¢;,-1Di(a;.,) = 0 contradicts the initial
supposition.)

(o) If elements xi, ..., x, of K are linearly independent over {‘/ k=
{xe K| x* €k}, then x,, ..., x,”" are linearly independent over k.
(Hint: If x,*,..., x,” are linearly dependent over k, then they are
linearly dependent over k N K", by part (b)).

(@) If y,,...,y, are p-independent elements of "VE& over ¥ k, then
¥, ...,y are p-independent elements of Vk over k. (Hint: Using
4.3.5, 5.2.1 or E.4.7, relate the p-independence of y,, ..., y, over k&’ to
the k’-independence of the monomials x, = y;°-- -y with 0 <
e, < p— 1forl < i< s. Then use part (c).)
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i+1 R
(e) If yi,...,y, are p-independent elements of ""VE over ¥ k, then
pt i—1 .

V1% ..., ¢ are p-independent elements of Vk over "VE. (Hint:
Use part (d).) . -

® Choosing m such that K = Vkz"Vkz - 2 VEk 2k, there
exist elements yi,..., Vs Vsm+1s - s Vopogo - - -s Vsg+1o-- s Vs, Of K
such that o
V1, .., ¥s, is a p-basis for K over ’ Vk; - e
V1P o v s Vsu's Ysm+1s - - o5 Ysm_, is @ p-basis for "'Vk over Vk;

pm—-l ”m—l pm-z pm—2
N seees Vsp ’yp,,,+1s-'"ypm-l,---aysz+ls---9ysp

is a p-basis for V'k over k.
(Hint: Use part (e).)

(8) K = k(y1) Q-+ ®i k(ys,) (internal tensor product over k) where
the yy, ..., y,, are as described in part (f).

E.6.15 (Dual of Measuring Representation). Let p: C—End, K be a
measuring representation of a finite dimensional colocal k-coalgebra C with
grouplike element e on an extension K/k and suppose that p(e) = I (identity
of End, K). Let 4 be the dual k-algebra of C, let 1, be the identity of 4 and
let Nil 4 = e! be the nil radical of 4. Show that

(a) p induces a unique k-algebra homomorphism «: K — 4 ®, K such
that for y € K, a(y) = 2,4, ® y; if and only if p(c)(») = 3, a0)y;
for all ce C;

(b) foreachye K, a(y) = 1, ® y + >, u; ® y, for suitable u, € Nil 4 and
y;€ K. (Hint: A4 is spanned by 1, and Nil 4, so that an expression for
o y) of the above kind exists, the only problem being that the first
term is 1, ® z. Show that y = z by applying p(e).)

E.6.16 (Dual Measuring Representation). Let «: K— A4 ®,K be a k-
algebra homomorphism from a field extension K of k to the tensor product
k-algebra of a finite dimensional k algebra 4 and K. Let C be the dual k-
coalgebra of 4. Show that « induces a unique measuring representation
p: C—End; K of C on K such that for ce Cand y € K, p(c)(») = ;¢ (a))y;
if and only if «(y) = >, a, ® y,.

E.6.17 (Sweedler). Let K/k be a finite dimensional field extension and let

V'K be a finite dimensional extension of K such that K = k((V'K)?). Suppose
that C'is a finite dimensional cocommutative colocal k-coalgebra with group-
like element e and let p: C — End, K be a measuring representation of C on K
such that p(e) = I. Show that there is a finite dimensional cocommutative

colocal k-coalgebra v/C with grouplike element V¢ and measuring repre-
sentation V'p: v/ C — End, VK of v/ C on VK such that v/p (Ve) = I which
lifts the action of C on K to the action of v/C on VX in the sense that there
is a surjective k-coalgebra homomorphism r: +/C — C'such that for VeeVC
and y e K, Vp(Ve)(y) = p(+(V/O)(»). Do this by proving the following.
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(@) Let xi,..., X, be a p-basis for VK/K. Let X = {Xi,..., X} (set of
m commuting indeterminants) and let 7 be the ideal of K[X] generated
by {XP —xf|l1<i<mhLetX;=X,+Iforl <i<mandlet
K[X] = K[X]/I. Show that there is a K-linear isomorphism from
K[X]to VK sending X, to x; for | <i < m.

(b) Show that there exists an integer n and elements u;, € Nil 4, x,; € VK
(1 <i<ml<j<n) such that o(x?) = 1, @ x + 5, u; ® x,,°
for 1 < i < m, A being the dual k-algebra of Cand «: K> 4 ®, K
being the k-algebra homomorphism dual to p: C — End, K described
in E.6.15. '

(© Let Y={Y,;|l <i<m1<j<n} (set of mn commuting inde-
terminants) and let J be the ideal of A[Y] generated by {Y,» — u; |
l<i<ml<j<n} Let Vu,=Y;+J for 1 <i<m 1<

j<n and let VA = A[Y]/J. Show that B: 4 — V4, defined by
B(a) = a + J, is an injective k-algebra homomorphism. Identifying
A and B(A), show that (Vu;;)P = w; for all i, j and show that VA4 is a
split local finite dimensional commutative algebra.

(d) Show that there is an extension of «: K—> A4 ®, K to a k-algebra

homomorphism from K[X]to V4 ®, \/T(mapping Xitol, ® x; +

S;Viu; ® x,; for 1 <i < m and therefore vanishing on I. Thus,
show that «: K— 4 ®, K has an extension to a k-algebra homo-

morphism Va: VK — V4 ®, VK, by applying part (a).
(e) Let V/C be the dual k-coalgebra of /4 and let v: v/C — C be the
surjective k-coalgebra homomorphism induced by B: 4 — /4 and
—~  the equations (V¢) = d if and only if a(d) = V¢(B(a)) for all
acA(VceC,deC). Let Vp: v/C—> End, VK be the measuring
representation of V'€ on VK dual to V'« (see E.6.16). Show that
Vp(Ve)p) = p(=(VE)(y) for VeeV/C and yeK. Show in par-
ticular that v/ p(V'e) = p(e) = I where Ve is the grouplike element
of V'C.

E.6.18. Let K/k be a finite dimensional field extension and let VK be a
finite dimensional extension of K such that K = k((V'K)?). Let x,, . . ., x,, be
a p-basis for VK/K. Show that

(a) there are derivations t,,. .., t,, of VK over k such that ti(x) = 8,
forl <1i,j < m;
(b) the k-span T of I, t,,...,t, can be regarded as a cocommutative

colocal k-coalgebra with grouplike element 7 such that the inclusion
mapping 8: T— End, VK is a measuring representation;
(¢) the commutant VK7 is K.

E.6.19 (Sweedler). Let K/k be finite dimensional radical extension. Show
that there exists a finite dimensional cocommutative colocal k-coalgebra C
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with grouplike element e and measuring representation p: C — End, K such
that p(e) = I and the commutant K¢ = {x € K| p(c)(x) = &(c)c for all c e C}
is k. Show this as follows.

(@) Let K, = k(K?) for i = 0,1,2,... and let VK, = K,_, for i > 1.
Show that K=K, 2 K; 2 ---2 K, = k for somem and K; =
kK(VEK)) for all i.

(b) For each i, there exists a finite dimensional cocommutative k-coalgebra
C,; with grouplike element e; and measuring representation p;: C; —
End, V'K, such that p(e;) = I and VKS = K,. (Use E.6.18.)

(c) For each i, there exists a finite dimensional cocommutative colocal
k-coalgebra \/\/ C, with grouplike element \/\/ e, and measuring
representation v/ Vo VVG — End,, K such that VoV Ve) =
I having the property that K'7% VK, = K,. (Use (b) and apply
E.6.17 over and over again.)

(d) Show that if D,, D, are cocommutative colocal k-coalgebras with
grouplike elements f3, /5, then the k-span P = k(f; — f2) is a coideal
of D; + D, (direct sum k-coalgebra) and D = (D; + Dy)/P is a
cocommutative colocal k-coalgebra with grouplike element f = f; +
P = f, + P. Show that if p;: D; — End, K (i = 1, 2) are measuring
representations of D; and D, such that p(f;)= I (i = 1,2), then
p: D — End, K, defined by p(d; + dg) = pi(d1) + pa(dy) for d, € D,,
d, € D,, is a measuring representation of D such that p(f) = I

(e) Using parts (c) and (d), show that there is a finite dimensional co-
commutative colocal k-coalgebra C and measuring representation
p: C — End, K such that K¢ = k.

E.6.20 (Sweedler). Let K/k be a finite dimensional normal extension. Prove
that there exists a finite dimensional cosplit cocommutative k-coalgebra C
and measuring representation p: C — End, K such that K¢ = k. (Hint: Let
K = KK, (internal tensor product over k) where K;/k is Galois and Kj/k is
radical. Let C, be the k-span of Aut, K; and regard C,; as group k-coalgebra
measuring K;. Let C, be the k-coalgebra measuring K, constructed in E.6.19
and take C = C; ®, Cs.)

E.6.21 (Sweedler). Let A be a k-algebra. A measuring k-coalgebra on A is a
pair (C, p) where C is a k-coalgebra and p: C — End, 4 a measuring repre-
sentation. A morphism from a measuring k-coalgebra (C, p) to a measuring
k-coalgebra (C’, p') is a k-coalgebra homomorphism d: C — C’ such that the
diagram

c'
d[ End, 4
C P

is commutative. A universal measuring k-coalgebra on A is a measuring k-
coalgebra (C’, p’) on K such that for any measuring k-coalgebra (C, p) on



Exercises to chapter 6 145

A, there exists a unique morphism ¢ from (C, p) to (C’, p'). A universal
cosplit cocommutative k-coalgebra on A is a cosplit cocommutative k-
coalgebra (C’, p’) on 4 such that for any cosplit cocommutative k-coalgebra
(C, p) on 4, there is a unique morphism ¢ from (C, p) to (/, p').

(a) Given any vector space V over k, show that there is a pair (C’, p'),
called the free k-coalgebra on V, where C’ is a k-coalgebra and
p': C' — V a k-linear mapping such that for any pair (C, p) where C
is a k-coalgebra and p: C — V a k-linear mapping, there is a unique
k-coalgebra homomorphism ¢: C — C’ such that the diagram

c’ ’

is commutative. (Hint: Let 7(*) be the tensor algebra on the dual
space V* of V. Then let C’ be the sum of the subcoalgebras D of the
dual k-coalgebra T'(V*)° of T(V*) such that i*(D) < V where i* is
the transpose i*: T(V*)* — V'** of the embedding i: V* — T(V'*)
and where V is embedded canonically in V*%.)

(b) There exists a universal measuring k-coalgebra (M (4), py) on A.
(Hint: Let M,(A4) be the sum of the subcoalgebras D of the free k-
coalgebra (C’, p') on End, K such that py|,: D—End, K is a

. measuring representation of D on K).

(c) There exists a universal cosplit cocommutative measuring k-coalgebra
(Hi(A), pxr) on A. (Hint: Let H,(A) be the sum of the cosplit co-
commutative k-subcoalgebras of M,(A4).)

(d) There is a k-linear mapping =: Hi(4) ®, H,(A) — H,(A) such that
H,(4) together with = is k-algebra and H,(A) as k-algebra and k-
coalgebra is k-bialgebra. (Hint: Describe a measuring representation
of the cosplit cocommutative k-coalgebra H,(4) ®, H,(4) and use
the universality of (H,(4), py) to obtain =.)

E.6.22 (Sweedler). Let K/k be a finite dimensional normal extension. Show
that K#<® = k. (Hint: Use E.6.20 and the universality of H,(K)).

E.6.23. Let K/k be a finite dimensional normal field extension. Show that

(@) pu: Hi(K) — End, K is a measuring representation of H,(K) as
k-bialgebra;

(b) letting KH,(K) denote the semidirect product K/k-bialgebra of K and
H,(K) with respect to py, and letting I be the K/k-biideal of elements
of KH(K) which map into 0 under I ® py, the K-measuring K/k-
bialgebras KH,(K)/I and H(K|k) are isomorphic.

E.6.24 (Pickert). Let K/k be any finite dimensional radical extension and
let S be a minimal subset such that K = k(S). Show that

(a) Sis a p-basis for K/k;
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(b) S has subsets S; such that S = S, > §; @ --- and S = {s*' | s€ S}}
is a p-basis for k(K?")/k for all i;
(c) the subsets T; = S;_; — S; satisfy the conditions

(1) S = Ui T;
2 T < k(Us»: T7).

The sets Ty, Ty - - - are a canonical generating system of Kjk.

E.6.25 (Mordeson and Vinograd). Let K/k be a radical extension of in-
finite dimension. Assuming that K*" < k for some n, prove (a), (b), (c) of the
preceding exercise in the present context. What can be said for arbitrary
radical extensions K/k?

E.6.26 (Haddix, Mordeson, Sweedler, Vinograd). A subbase of a radical
extension K/k is a subset S of K-k such that K = k(S) and k(S,) = k(sy) - - -
k(s,) (internal tensor product over k) for any finite subset So = {sy,. .., 8.} of
S. Show that if K?" < k for some n, then the following conditions are
equivalent, using the ideas described in E.6.14.

(a) K/k has a subbase;
(b) K” and k are linearly disjoint over K?* N k for all i;
(c) for any canonical generating system T3, T, - - - of K/k,

T < (K*' N k)(U T,”‘) for all i.
i>1
An arbitrary extension K/k which satisfies conditions (b) is a modular
extension. -

E.6.27. A finite dimensional radical extension K/k is toralldiagonalizable if
there exists a toral/diagonalizable k-subbiring T of H(K/k) such that KT = k.
Show that the following conditions are equivalent:

(a) Kk is diagonalizable;

(b) K/k has a subbase;

(¢) K/k is modular;

(d) k = K? where 2 is the set of higher derivations of K/k
(Hint: Use E.6.14).

Using the equivalence of (a) and (d), show that K has a unique minimal
subfield k£’ such that K|k’ is diagonalizable.

E.6.28. Show that if K/k is a finite dimensional radical extension, L is the
separable closure of k, K = L ®, K, k = L ®, k, then K/k is diagonalizable
if K/k is toral.

E.6.29 (Weisfeld). Letk = Z,(X, Y, Z) (purely transcendental extension of
Z, with transcendency basis X, Y, Z), choose a € k,y; such that a** = X,
choose b €k, such that b = g®Y + Z and let K = k(a, b). Show that
K = k(a)k(d), k(a) N k(b) = k(a®) 2 k and that the dimensions indicated by
the following diagram are correct:
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D
1’/ P
k(a) k(b)
\P b
k(a®)
|
k
Finally, show that K/k is not diagonalizable.

E.6.30. Show that there is a finite dimensional radical extension which is
not toral. (Hint: Let L be the separable closure of k and let £ = L QR K,
k = L ® k where K]k is the extension constructed in E.6.28. Show that the
dimensions indicated by the diagram

K
NG
k(a) k(b)
N
k(a?)

P

k
are correct. Finally, using E.6.28, show that K/k is not toral).

E.6.31. Let K/k be a radical extension. Let C be a finite dimensional K-
subspace of End, K such that [x, y] € C and x? € C for all x, yeC. Letting L
be a separable extension of k, K = L ®, K,k = L Q. k, C = L ®, C, show
that C is a finite dimensional K-subspace of End; K such that [x, y] € C and
x? e C for all x,yeC. (Hint: After showing that the K-span [C, T ] of
{[x, y]| x, y € C} is a subset of C, show that if x, y € C and x?, y* € C, then
(x + y)? € C because (x + y)* = x* + y? (mod [C, C]).

E.6.32. Show that if K/k is an Abelian -extension of finite degree not
divisible by p, then the k-span T of Aut, K is toral k-subbiring of H (K[k).

E.6.33. Let K/k be a Galois extension of degree n not divisible by p, and
suppose that k contains all of the nth roots of unity in ka1e- Show that
H(K]k) has at most one diagonalizable k-subbiring 7 such that KT = k,
namely, the k-span of Aut, K.

E.6.34. Let K/k be a Galois extension of degree n and suppose that H(K/k)
has a diagonalizable toral cosplit k-subbiring 7 such that K7 = k. Show that
KJk is an Abelian extension and that k contains all of the nth roots of unity
In k.. (Hint: Show that T is the k-span of Aut, K).
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E.6.35. Let K = k(x) where x € K-k and x? € k. Let s and ¢ be the derivations
of K/k such that
s(xh) = ixt
t(x + D) =i(x + I
for all i. Let S be the k-span of I, s,...,s?~! and let T be the k-span of
It ...,t*1. Show that S and T are two distinct cosplit k-forms of the
K/k-bialgebra H(K]/k).

E.6.36. Let K/k be a finite dimensional radical extension of exponent one.
Prove the following.

(a) If T is a maximal finite dimensional diagonalizable toral k-subring of
H(K[k), then KT = k.

(b) If S is a diagonalizable k-torus in Dery K, then there exists a di-
agonalizable k-torus S’ in Der,. Ksuchthat S N § "={0,T=S+ S8
(direct) is a maximal k-torus in Der, K and, consequently, KT =k
and K = KSK¥ (internal tensor product over k).

(c) For any subfield k' of K containing &, there is a subfield k" of K
containing k such that K = k’k” (internal tensor product over k).

E.6.37. Let K/k be a finite dimensional radical extension of characteristic
p > 0 and let D e Der, K. Show that for some e, the k-span (D**) of
D*, D***, ... is a toral k-subcoalgebra. Use this to show that not every
toral k-subcoalgebra is diagonalizable.

E.6.38. Let K/k be a finite dimensional radical extension of characteristic
p > 0. Let 4 be a subset of H(K/k) whose elements commute pairwise, and
suppose that e(4) < k and for each x € 4, there exist ;x, x; € A such that
Ax = 3, x ® x;. Show that there is a toral k-subcoalgebra T of H ?K/k) such
that K4 = K7. (Hint: Consider the k-span of all p°th powers of elements of
A, e being chosen sufficiently large).

E.6.39 (Toral Descent). Let K/k be a (possibly infinite dimensional) field
extension of characteristic p > 0. A toral k-subcoring of H(KJk) is a finite
dimensional k-subspace T of H(K]k) containing I and consisting of pairwise
commuting elements such that 7 is the k-span of 7% = {t* |teT}and Tisa
k-subcoring of H(K/k). Let T be a toral k-subcoring of H(K/k) and let ¥ be
a vector space V over K. Then a T-product on V is a mapping T x V—V,
denoted (¢, v) — t(v) = t(v), such that

1. t+> ¢, is a k-linear mapping from 7T to Hom, V'3 I, = idy;

2. s(t@)) = t(s@)) for s, teT,veV;

3. (t")u(v) = (t)°@) forall te T, v e V;

4. t(av) = >; (@) forallteT,ae K, ve V.
Suppose that K/k is radical, let L be the separable closure, let K=L®.K,
F=L®.k T=LQ®.T, V=L®,V and make the usual identifications.
Describe how T can be regarded as a toral k-subcoring of H(K/k) and show
that for any T-product 7 x ¥ — ¥, there is an extensionof 7 x V' — V'toa
T-product T x ¥ — Von V. Assuming that T x ¥ — Vis a T-product on V"
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having the property that if # € T° and if ¢ is contained in the subring {S) of
End, X generated by a k-subspace S of T, then t(v) = 0 for all ve VS =
{ve V| s(v) = 0 for s € S, prove the following. (Here, T° = T N Kern ¢ as
usual).

@) T, ={teT|t” =t} is a m-form of the k-space T, = being the prime
field of k.

() V = Sucrs V., (direct) where T¥ is the w-dual space of T, and
t(v) = e(tyoforteT,,ve ¥V, a e TE (Hint: Use part (a).)

(o) For each veV, v is contained in a finite dxmensmnal T-stable K-
subspace of V. (Hint: Use part (b).)

(d) For each ve ¥, v is contained in a finite dimensional T-stable K-
subspace of V. (Hint: Use part (c).)

(© V' ={veV|tav) = t(aw for all teT,aec K} is a K™-form of the
K-space V. (Hint: Use part (c) to reduce the case where V: K is finite.
Then follow the ideas used in Chapter 6 in proving that H(K/k)T and
C T are K”-forms of H(K/k) and C.)

() V' ={veV|t(a) = t(a) for all teT,ac K} is a K'-form of V.
(Hint: Use part (e).)

(The relationship of “torus” as used here to “torus” as used in Chapter 6 is
described in Chapter 4 of [22].)



S Set theory

Roughly speaking, sets are collections of objects or elements and set theory
is a precise language in which sets and their elements are, ultimately, the sole
object of discussion. This language is extremely well suited as a language
within which to develop most mathematics. In this appendix, we briefly
describe the set theory needed for this book. We describe the basic concepts
and the most meaningful consequences of the usual axioms or basic assump-
tions of set theory, but do not attempt to describe the axioms themselves.
The reader who is interested in further pursuing set theory is referred to
[41, [7].

S.1 Sets and elements

Sets are usually denoted by upper case letters 4, B, C, .. .. Familiar sets
are the set Z of integers, 0, +1, +2, ..., the set Q of rational numbers m/n
(m, n integers, n # 0), the set R of real numbers, the set C of complex num-

bers and the set Z, of residues 0, 1, ..., n — 1 modulo a positive integer n.

Given x and a set A, either x is an element of 4, written x € 4, or x is not
an element of A4, written x ¢ A. A set A4 is a subset of a set B, written 4 < B,
if x € A implies that x € B for all x. If 4 is not a subset of B, we write 4 ¢ B.
For any two sets 4 and B, 4 = Bif and only if 4 = Band B = 4. We some-
times write A < Bfor A < B.If A < Band A # B, we write A & B and say
that 4 is a proper subset of B. We also write A3 x, A% x, B> A, B A,
B2A B2 AforxeA,x¢ A, A< B,A ¢ B, A S B, A S B respectively.
Note that xe 4 and 4 < B implies x€ B, and 4 < B and B < C implies
A< C.

Sets can be constructed in a number of axiomatically prescribed ways. If
A is a set and S(x) a statement about x, then {x € 4 | S(x)} is a set (called the
set of x € A such that S(x)) such that ye{xe 4| S(x)} if and only if ye 4
and the statement S(y) is true. There is a (unique) set & (called the empty set
or null set) such that y ¢ @ for all y. For any x, there is a set {x} (called the
one point set containing x or the singleton of x) such that y € {x} if and only if
y = x. If A and B are sets, there are sets 4 — B (called the difference of 4
and B), A U B (called the union of A and B) and 4 N B (called the intersection
of 4 and B) such that ye 4 — Bif and only if yeAand y¢ B,ye AU B
if and only if ye4 or ye B,ye AN B if and only if ye A and y€ B.
If An B = @, we say that 4 and B are disjoint. Note that 4 U B =
Bud ANB=BNA4, (AUBUC=AUVUBUV0),ANB)NC=4nN
(BNC), AN(BUC)=UANBUANC). Welet 4, VA4, VA3V
UAd,=(- (A4 VA)VAzl)V---)UA4, and 4, NA;N---NA, =

150
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(- (4N A) N Az) )N A, For any xy, . . ., x,, we let {x,, ..., X} =
{x1} U+ U {x,} and call it the set consisting of x,, . . ., x,.

For any set 4, there is a set P(4) (called the set of subsets of A or the
power set of A) such that S € P(4) if and only if S < A. The set P(A) is an
example of a collection of sets, that is, a set all of whose elements are sets. If
A is a collection of sets, then there is a set | Jsca S (called the union of the sets
in A) such that y € s, if and only if y € S for some S € A. And there is a
set (sea S (called the intersection of the elements of A) such that y € Nsca S
if and only if y € § for all S€A. For any x and y, (x, y) denotes the set
{{x}, {x, y}} and is called the ordered pair of x and y. The importance of this
asymmetric definition of ordered pair is that it leads to the familiar property
(x,y) = (x',y") if and only if x = x" and y = y’. For any x,, ..., x,, we let
(%3, . . ., X,) denote ((- - - ((x1, X2), X3), - - +), X,) and call it the ordered n-tple
of xy, ..., %,. Given sets 4, ..., 4, there is a set 4, x --- x A, (called the
Cartesian product of A,,..., A,) such that ye 4; x --- x A, if and only if
y=(x,...,X,) where x;€4,,...,x,€ A, For any set 4, A" denotes
A x -+ x A (n times).

S.2 Functions

A function from A to B is a subset f of A x B such that for each a € 4,
there exists precisely one b € B such that (a, b) € . Suppose that fis a function
from A to B. For a € 4, we denote the element b € B such that (a, b) € f by
Sf(a) and call f(a) the image of a under b. Thus, f={yecd x B |y =
(a, f(@)) for some a € 4} or, in a more abbreviated notation, f = {(a, /i @) |
a € A}. To indicate that f'is a function from 4 to B, we often write f: 4 — B.

The domain of f: A — B is Domain f = A. The image of f is Image f=
{be B| b = f(a) for some a € 4} or, in a more abbreviated notation, Image
f={f(a) | ae 4}. We say that the function f: 4 — B is surjective from 4 to
Bif Image f = B. If f(a) = f(a') implies that a = a’ for all a, a’ € A, we say
that fis injective from A to B. If f: A — B is surjective and injective from 4 '
to B, we say that f'is bijective from A to B.

If /: 4 — B is bijective from 4 to B, then f~* = {(b,a) | (a, b)) ef} is a
bijective function from B to 4 such that f~*(b) = aif and only if f(a) = b for
all b e B. If f is a function from 4 to B and g is a function from B to C, then
g°f ={(a, g(f(@)) | ae A4} is a function from 4 to C such that (g - f)(a) =
g(f(a)) for all a € A. The function g o f is called the composite of fand g. If,
furthermore, 4 is a function from C to D, then (hog)of = ho (g
Letting id, = {(a, @) | a € A}, id4(a) = a for all a € A. If fis a function from
Ato B, then foid, = fand idg o f = f. The function id,: A — A is called the
identity function on A.

Suppose that fis a function from A4 to B and g is a function from B to C.
If g o fis surjective, then g is surjective. If g o fis injective, then fis injective.
Suppose, furthermore, that C = 4, so that fis a function from 4 to B and g
a function from B to A. Then f and g are bijective if and only if g o fis bijec-
tive. In particular, fand g are bijective and g = £~ if and only if gof=1id,
and fog = id;.
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If f'is a function from 4 to Band S < 4, then f|s = {(a, f(a)) |ae S}isa
function from S to 4 such that f|s(@) = f(a) for all a € S. The function f| is
called the restriction of fto S. If fis a function from 4 to Band if 4" > 4,
B’ o B, an extension of fto A’ is a function f’: 4’ — B’ such that f (@) = f(a)
for all a € A. '

If fis a function from A4 to B, g a function from 4 to C and h a function
from A to C, then we say that the diagram

is commutative if h = g o f. In a more complicated diagram of sets and arrows
labelled by functions, any directed path from one point in the diagram to
another point in the diagram corresponds to a composite functien f;, o - - - o f1.
The diagram is commutative if for any two points in the diagram and any two
directed paths from the first point to the second point, the corresponding
composite functions f,, o---o f; and g, o- - - o g; are equal.

S.3 Cardinality

Two sets A and B have the same cardinality if there exists a bijective
function f from 4 to B. If A and B have the same cardinality, we write
|4] = |B]. If 4 and B do not have the same cardinality, we write |4| # |Bl.
If 4 and C are sets and if C has a subset B such that |4| = |B]|, we write
|4] < |C|. If |4] < |B| and |4| # |B|, we write |4| £ |B|. For any set 4,
we have |4| £ |P(4)|. For any two sets 4 and B, precisely one of the follow-
ing is the case:

L |4] £ |Bl;
2. |4| = |Bl;
3. |B| £ |4].

This theorem is dependent upon the socalled Axiom of Choice, which states
that for any set A, there exists a function f from P(4) to 4 such that f(S)e S
- for every nonempty subset S of 4. Such a function f'is called a choice function
and may be regarded as ““choosing” an element f(S) from each nonempty
subset S of A.

If A4 is similar to the set {1, . . ., n}, then n is uniquely determined by 4, we
write | 4| = n and we say that A is finite and that 4 has n elements. If 4 is not
finite, we say that A is infinite. If A is similar to the set {neZ | n > 0} of
positive integers 1,2, 3, .. ., then 4 is infinite and we say that A is countably
infinite. Every infinite set contains a countably infinite subset. (This theorem
is dependent on the Axiom of Choice). If 4 is either finite or countably
infinite, we say that A is countable. If A is not countable, we say that A4 is
uncountable. For any infinite set 4, the power set P(4) is uncountable.
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S.4 Zorn’s Lemma
A partial order on a set A is a subset < of A x A such that

l.a<aforallae A4;
2. a < b and b < a implies that a = b for all a,be A;
3. a < b and b < ¢ implies that a < ¢ for all q, b,ced;

where “a < b” is the statement ““(a, b) is an element of the subset < for
a,be A. We write a R if a < b and a # b. Set inclusion X < Yis a partial
order on the set A = P(B) of subsets X of a set B. Let 4 be a partially ordered
set, that is, a set together with a partial order <. A chain in A is a subset C of
A such that for any a, be C, either a < b or b < a. An upper bound for a
chain Cin 4 is an element b € 4 such that ¢ < b for all c e C. A least upper
bound for a chain Cin A4 is an upper bound b for C such that b < b’ for every
upper bound ' of C. A maximal element in A is an element m € A such that
m R ais false for all a € 4. Zorn’s Lemma (also dependent on the Axiom of
Choice) states that if every chain C in a partially ordered set 4 has a least
upper bound, then 4 has a maximal element.

S.5 Transfinite induction

A total order on a set A is a partial order < on A such that for anya,be A,
eithera <borb<a.InZ a < bis a total order. A first element of a subset
S of a set 4 with total order < is an element s e S such that s <t for all
t€ S. A well ordering of a set A is a total order < on A such that every non-
empty subset S of 4 has a first element. The total order < on Z is not a well
ordering of Z, since Z has no first element. However, Z has a well ordering <,
defined by m < n if m and n are both nonnegative and m < n, m <nif m
and n are both negative and —m < —n, and m < nif m is negative and n is
nonnegative. In fact, any set 4 has a well ordering on 4. (This theorem is
dependent upon the Axiom of Choice.)

Suppose now that A is a well ordered set, that is, a set together with a well
ordering <. Let S(a) be a statement about the elements a € 4. To prove by
Transfinite Induction that S(a) is true for all a € 4, it suffices to prove that
S(a) is true if a is the first element of 4 and that for any element a of A, if
S(b) is true for all b £ a, then S(a) is true. To see why, suppose that S(a) is
not true for all a€ 4 and let S = {a € 4 | S(a) is not true}. Let a be the first
element of S. Then S(a) is not true, but S(b) is true for all b = a, so that the
conditions just described are not met. ‘



T Tensor products

In this appendix, we construct the tensor product ¥ ® W of two vector
spaces and discuss its properties. In T.1, we construct V' ® W and relate the
bases and generating subsets of ¥ and W and the bases and generating
subsets of ¥ ® W. In T.2, we discuss the tensor product 4 ® Be Hom
VW, V' ® W) of AeHom (V, V") and Be Hom (W, W’). In T.3, we
provethat k@ V, VQ W, (V¥ ® W)® X and (V, DV,) ® W are naturally
isomorphic to V, W@V, VQ(WQ® X) and (V; @ W)@ (V. ® W) re-
spectively. In T.4, we use tensor products to introduce the processes of ascent
and descent for passing from a vector space ¥V aver a subfield £ of a field K
to a certain vector space (V;)x over K, and from a vector space ¥ over K'to a
vector space ¥, over k such that ¥y and (¥,)x are naturally isomorphic.

T.1 Preliminaries

Let ¥ and W be vector spaces over a field k. A pairing of ¥ and W is an
ordered pair (f, X) where X is a vector space over k and fis a function from
the Cartesian product ¥ x W to X which is bilinear in the sense that

1' f(vl + Vg, W) =f(vls W) +f(”2> W),
2' f(vs w1 + WZ) = f(l), wl) + f(U, Wz),
3. f(cv, w) = f(v, cw) = cf (v, w) for v, v1, 02 € V, W, Wi, Wwa € Wandcek.

If (f, X) and (g, Y) are pairings of ¥ and W, then a morphism|isomor-
phism from (f, X) to (g, Y) is a linear transformation/bijective linear
transformation «: X — Y such that the diagram

VXW——f—-»X

N

Y

is commutative. A universal bilinear pairing of ¥ and W is a pairing (f, X) of
¥ and W such that for each bilinear pairing (g, ¥) of ¥ and W, there exists
a unique morphism « from (f; X) to (g, Y).

If (f, X) and (g, Y) are universal pairings of ¥ and W, then (f, X) and
(g, Y) are isomorphic. For let «: X — Y be a morphism from (f, X) to
(g, Y) and let B: Y— X be a morphism from (g, Y) to (f; X). Then
Boa: X— X and idy: X — X are morphisms from (g, X) to (g, X). Thus,
Boa = idy. Similarly, o B = idy. Thus, « and B are inverses and « is an
isomorphism from (f, X) to (g, Y).

154
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We now let {v; | i € S} and {w, | j € T} be bases for ¥ and W respectively,
and describe a particular universal pairing of ¥ and W which we refer to as
the standard universal pairing of ¥ and W with respect to the bases {, |ie S}
and {w; | jeT}. Let F(S x T, k) be the vector space of functions from
S x T to k. For each (i,j))eS x T, let x;, be the function such that
xi(i',j) = 0 if (i, /) # (i',j") and x,,(i,j) = 1. Let X be the subspace of
F(S x T, k) with basis {x;; | i€ S,jeT}. Let f: V x W — X be defined by
fCiaw, 3;bw) = 3, ; ab;x;;. Then (f, X) is a pairing of ¥ and W. More-
over, (f, X) is universal. For if (g, Y) is a pairing of ¥ and W, then the linear
mapping «: X — Y such that «(x;)) = g(v;, w)) for ee S, jeTis a (unique)
morphism from (f; X) to (g, Y).

We now know that ¥ and W have a universal pairing, and that any two
universal pairings of ¥ and W are isomorphic. For this reason, we speak of
the universal pairing of ¥ and W. The universal pairing of ¥ and W is called
the tensor product of V and W over k.

We usually denote the tensor product of ¥ and W over k by (®, V ® w),
so that V' ® W is a vector space over k and @: V' x WV W is a
bilinear mapping such that for any pairing (g, Y) of ¥ and W, there exists a
linear mapping «: ¥ ® W — Y such that the diagram

V x W—&V@)W

N

Y

is commutative. We denote ® (v, w) by v @ w for ve ¥, we W, and call
v ® w the tensor product of v and w. The commutativity of the above diagram
now says that g, w) = a(v @ w) for all veV,weW. We let v Q W =
{fv@w|lweWland VQw={v@w|veV}forve ¥V, we W. At times, it
is convenient to display the field k£ when using tensor products, in which case
we may write V Q, W, 0 @ w, v Q, W, V@, wfor VQ W, v ® w,oQ W,
V ® w respectively.

If {v;| ie S} and {w, | je T} are basis for ¥ and W respectively, then
{vi ®@w;|ieS,jeT} is a basis for ¥ ® W. To see this, let (f, X) be the
standard universal pairing with respect to the given bases, so that
{xi;|i€S,jeT} is a basis for X where x,; = f(v, w;) for ie S,jeT. Let
a: V' ® W — X be the isomorphism such that the diagram

VxW—QL»V@)W
f l“
X

is commutative. Then we have «(v; @ w,) = f(,, w) =x, for ieS,jeT.
Thus, {v;, ® w; | i€ S,je T} is a basis for V¥ Q@ W.
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The vector space V ® W is generated by {v ® w| ve V, we W}, as we see
from the preceding paragraph. More generally, if {v; | i€ S} and {w; | je T}
generate ¥ and W respectively, then {v, @ w; | i€ S, j € T} generates V' Q W.
To see this, it suffices to observe that each v @ w (ve ¥V, we W) is a linear
combination of the v; ® w;. However, for v = 3; civ; and w = 3, djw,, we
have v @ w = 3, cid;(vi @ wy).

If{v, | i € S’} and {w, | j € T'} are linearly independent subsets of Vand W
respectively, then {»; ® v; | i€ S’, je T’} is a linearly independent subset of
V ® W. For we may extend these linearly independent subsets to bases
{v;|ie S} and {w,| je T} for V and W respectively, where S’ <= S and
T' < T, and then {v;, ® w, | i€ S,je T} is a basis for V@ W.

If {w, | je T} is a linearly independent subset of W and if 3, v @ w;, =0
where the ;v are in V, then ;o = 0 for all j. To see this, let {v; | i € S} be a basis
for Vand ;o = >, ¢;v, for je T. Then

0= Z (zj: cjlvi) R w; = Zj cii(v; @ wy),

sothatcy, = OforallieS,jeT and v = 0 for allj e T, by the linear inde-
pendence of the v; ® w,. Similarly if {v; | i€ S} is a linearly independent
subset of ¥ and if 3;v, ® ;w = 0 where the ;w are elements of W, then
w = 0 for all i. These two properties of ¥ @ W are referred to as the linear
- disjointness of V.and Win V' Q@ W.

It follows easily from the above observations that if {w;, | j € T} is a basis
for W, then each element of ¥ ® W can be expressed uniquely in the form
S, v ® w,, where the ,v are suitable elements of V. Similarly, if {v; | i € S} is
a basis for V, each element of ¥ ® W can be expressed uniquely in the form
S, v ® w, where the ,w are suitable elements of W.

For a pairing (f, X) of ¥ and W to be a tensor product of V" and W, any
one of the following conditions is sufficient:

1. ¥ and W have bases {v, | i € S} and {w, | j € T} respectively such that
{f(v;, w)) | i€ S, je T} is a basis for X;

2. W has a basis {w; | j € T} such that for each element x € X, there exist
unique elements ;v € V' (j € T) such that x = 3, f(», w);

3. ¥ has a basis {v; | i € S} such that for each element x € X, there exist
unique elements w(i € S) such that x = 3, f(v;, W).

To see this, let «: ¥ ® W — X be the linear mapping such that the diagram

VXW;®—>V®W

N

X

is commutative. If ¥ and W have bases {v; | i € S} and {w, | j € T} such that
{f(v,, w) | i€ S, jeT}is a basis for X, then {r, ® w; | i€ S,jeT} is a basis
for V@ W and «(v, ®w,) = f(vi, W), so that « is an isomorphism and (f; X)



Tensor products of linear transformations 157

is a tensor product. This proves that (1) is sufficient. Suppose next that
{w;| jeT} is a basis for W such that for each element x € X, there exist
unique elements v € V (j e T) such that x = 3, f(,v, w,). Each element ¢ of
V' ® W can be written uniquely as t = > v ® w; where the jo(jeT) are
elements of ¥, and «(3; » ® w,) = 3, f(;v, w;). Thus « is an isomorphism
and (f; x) is a tensor product. This proves that (2) is sufficient. The proof that
(3) is sufficient is similar.

For a pairing (f; X) of V" and W such that X is generated by {f(v, w) |
veV,we W} to be a tensor product of ¥ and W, any one of the following
conditions is sufficient:

1. if {v; | ie S} and {w, | j € T} are linearly independent subsets of ¥ and
W respectively, then {f(;,, w;) | i € S, j € T} is linearly independent ;

2. if{w; | j € T} is a linearly independent subset of W and if 3, f(,v, w,) =
0 where the ,o(j € T) are elements of ¥, then ;o = O for all je T;

3. if {o; | i € S} is a linearly independent subset of ¥ and if 3, f(v;, ;W) = 0
where the ;w(i € S) are elements of W, then ,w = Oforallic S.

This follows easily from the preceding paragraph.

T.2 Tensor products of linear transformations

Let V, V', V", W, W', W" be vector spaces over k.

For 4 e Hom (V, V") and B € Hom (W, W’), we obtain a bilinear map-
ping A x B:V x W—V'Q W’ defined by 4 x B(v, w) = A(v) @ B(w)
for ve V,we W. The pair (4 x B, V' ® W') is a pairing of ¥ and W, so
there exists a unique linear transformation A @ B: V@ W — V' ® W’ such
that the diagram

VXW;®—>V®W

Axx 1A®B

VI®WI

is commutative, that is, such that (4 ® B)(v @ w) = 4A(v) ® B(w) forve ¥,
we W. Notethat A @ Be Hon(VQ W, V' ® W').

Let X be the subspace of Hom (VQ® W, V' ® W') spanned by
{A® B| AcHom (V, V'), Be Hom (W, W')} and let f: Hom (V, V') x
Hom (W, W') — X be defined by f(4, B) = A ® B. Then (f, X) is a tensor
product of Hom (¥, V') and Hom (W, W’). For obviously (f, X) is a pairing
of Hom (¥, V") and Hom (W, W’). It therefore suffices to show that for any
linearly independent subset {B; | j€ T} of Hom (W, W') and for 3, ,A ® B,
= 0 where the ;4(j e T) are elements of Hom (V, V'), ;4 = O for all je T.
For this, let v e V. Then 3, ;A(v)B{w) = 0 for all w € W, so that

2. ;A@)B; = 0.

i

Thus, ;A4(v) = 0 for all j € T, by the linear independence of the B,. Since this is
trueforallve V, ;4 = OforalljeT.
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What we have shown above is that the tensor product Hom (¥, V') ®
Hom (W, W’) can be taken to be the span of {4 ® B| A€ Hom (¥, V"),
Be Hom (W, W)} together with the mapping (4, B)—~ A ® B, where the
A ® B are as defined earlier in the section.

Letting V* and W* be the dual spaces ¥* = Hom (¥, k) and W* =
Hom (W, k) of V and W respectively, it follows that V* @ W* is the span of
{f®g|feV* ge W*}. The linear mapping f @ g: V® W—k ® k can be
identified with a linear mapping from V' ® W to k, since k ® k and k are one
dimensional and are therefore isomorphic under the mapping =: k ® k — k
defined by 7n(a @ b) = ab for a, b € k. Then f ® g is an element of (V' @ W)*
= Hom (V® W, k) and (f® g)v ® w) = f(v)g(w) for veV,we W. By
this identification, we have imbedded V* @ W* in (V ® W)*. If V and W
are finite dimensional, we have V* ® W* = (V' ® W)*, and otherwise,
V¥R W* g (VR W)

If AeHom(V, V'), CeHom (V', V"), BeHom (W, W') and De
Hom (W', W"), then we have (C® D)o(4A ® B) = (CoA) ® (Do B) in
Hom (VQ® W, V" ® W"), as is easily verified.

If AeHom (V, V') and BeHom (W, W) are injective/surjective/
bijective, then 4 @ Be Hom (VQ W, V' ® W') is injective/surjective/
bijective, as one easily verifies.

Let V, and W, be subspaces of ¥ and W respectively, and let A: V, — V
and B: W, — W be the inclusion mappings, that is, the mappings defined by
A(v) = v for ve V, and B(w) = w for w e W,. Since 4 and B are injective,
A ® B is injective. Thus, we may use 4 ® B to identify V, @ W, with the
span of v @ wlve Vo, we Wop of ¥ ® W. Henceforth, we will tacitly
assume this identification to have been made, so that we may write V, ® W,
={pQ@wWeVQ W|veV, we W}

Let ¥, and W, be subspaces of " and W respectively, let ¥ = V/V, and
W = W|W, and let A: V— V and B: W — W be the quotient mappings,
that is, the mappings defined by A(v) = v + Vyforve Vand B(w) = w + W,
for w e W. Since A4 and B are surjective from ¥V to ¥ and W to W respectively,
A ® Bis surjective from ¥V @ Wto ¥V ® W. One easily shows that the kernel
of AQ BisKernel AQB=V,Q W+ VQ W, It follows that V' Q W/
(Vo @ W + V & W) is isomorphic to V|V, ® W|W,.

T.3 The identity, commutative, associative and distributive laws for tensor
products

The vector spaces V and k ® V are isomorphic under the linear mapping
[ V—>k Q® V defined by f(v) = 1 ® v. For f maps a basis {v; | i € S} for V
to the basis {1 ® v; | i e S} for k € V. Similarly, V and V ® k are isomorphic.
The property V>~k® V ~ V®k is called the identity law for tensor
products, where we write *‘ ~ >’ for “is isomorphic to.” Note that this law can
also be expressed by the equalities kA Q V=1Q Vand V' k= ¥V ® 1.

The vector spaces V@ W and W ® V are isomorphic under a linear
mapping «: V® W— W ® V such that «(v @ w) = w ® v for ve ¥V and
w € W, called the twist from V ® Wto W ® V. To see this, let /> V x W—
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W @ V be defined by f(v, w) = w ® v. Then (f;, W ® V) is a pairing of V'
and W, and there exists a unique linear mapping o: V® W — W ® ¥V such
that the diagram

VW 2L vew

AN

Werv

is commutative. Clearly, a(v @ w) = w Q@ v for all ve V and w € W. Simi-
larly, there exists a unique linear mapping B: W ® V— ¥V ® W such that
BwQ@uv)y=vQ@w for all we W and ve V. Clearly, Boa = idygy and
aof = idygy, so that o« and B are inverses and « is an isomorphism. The
property V@ W =~ W ® Vs called the commutative law for tensor products.

The vector spaces (V® W)® X and V® (W ® X) are isomorphic
under a linear mapping «: (FQ W)R X -V Q& (W® X) such that
(P R@WRXx)=vQwx)forveV, we Wand xe X. To see this, we
fix an element x € X and define f.: V x W—>V Q® (W ® X) by filv,w) =
vQ@(w® x)forve Vand we W. Then (f,, V ® (W ® X)) is a pairing of V
and W, and there exists a linear mapping o,: V@ W— ¥V ® (W ® X) such
that the diagram

VxW-g-»V@»W

S l“x
) Ve We X)

is commutative. Next, define f/: (F Q@ W) x X >V Q (W ® X) by f(t, x) =
o,(t). Then (f, V @ (W ® X)) is a pairing of ¥ ® W and X, and there exists
a linear mapping a: (V' Q@ W) ® X — ¥V ® (W ® X) such that the diagram

vewm xx 2+ we W)® X

o~

Ve we X)

is commutative. Clearly, we have «(v @ W) ® x) = v ® (w ® x) for all
veV, we W and x e X. Similarly, there exists a linear mapping 8: V ®
WRX)->(VFR W)® Xsuchthat Br @ (W ® X)) = (v @ w) ® x for all
veV, weW and xe X. Since Be ) @ W) ® x) = (v @ w) ® x for all
veV,we W and x € X, the linear mappings B « and idygw,ex are equal
on a set of generators of (V¥ ®@ W) ® X and Boa = idygwex. Similarly we
have a o 8 = idy gwex). Thus, « and B are inverses and « is anisomorphism. The
property (VQ W) ® X = V® (W ® X) is called the associative law for tensor
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products. We may now disregard or omit parentheses accordingly, when
convenient.

Finally, suppose that ¥ = ¥; + V, (inner direct sum of subspaces). Then
VOW~V,Q W+ Vo, ® W (inner direct sum of subspaces). For let
{vi|ie SY, {v?|ie S, {w;|jeT} be bases for V;, ¥, and W respectively.
Then {v2 @ w;|ieS,jeT} and {v2 @ w;|ieS?% jeT} are bases for
vV, ® Wand V, ® W respectively, and {v;'! @ w; | ie S, jeT} U {v® Q@ w; |
ieS? jeT}is abasis for ¥V W. Similarly, WQ V=WV, + WQV,
(inner direct sum of subspaces).

It follows from the preceding paragraph that for V = ¥V; @ V, (outer
direct sum), there is an isomorphism e from V¥ Q@ Wto(V, @ W)@ (V. Q W)
(outer direct sum) such that o((v;Pv)) QW)= (0; QwW)D (v @ W)
for v,,v, € V and we W. Similarly, there exists an isomorphism 8 from
WQRVte (WQ V) @ (W& V,) (outer direct sum) such that

BwR 0, Du)) = wWQ®v)D(WwQ®uv;) forwe Wandv,vzeV.

The property (Vi@ Vo)) QW2 ViQ WV, Q Wand W (VL @ V) ~
WQV,® WQ® V,is called the distributive law for tensor products.

T.4 Ascent and descent

Let K be a field and let k be a subfield of K. Let V" be a vector space over k.
Fix an element ¢ € K and consider the function f,: K x ¥V — K ®,. V defined
by fu(d, v) = (cd) @ v for de K,ve V. Then (f,, K ®; V) is a pairing of K
and ¥, so that there exists a linear mapping «.: K ®; V— K ®, V such that
the diagram

KxV — KQ.V

-

K®.V

is commutative. Let Vx = K ®, V and define cv for c € K and v e Vi by
cv = a,(v). Then we have c¢(3; ,d; @ v)) = 3, , cd; @ v;foranyd,,...,d, e K
and v,,..., v, € V. One verifies easily from this that ¥, as additive group
together with the scalar product cv(c € C, v € V) is a vector space over K. It
is clear from T.1 that for any basis {v; | i € S} for Voverk,{l @ v;| i€ S}isa
basis for ¥V over K. Thus, a basis for 1 @ V over k is a basis for V' over K.
We refer to Vy as the vector space over K obtained froim the vector space V
over k by ascent from k to K.

Suppose, conversely, that ¥y is an arbitrary vector space over K. Since k
is a subfield of K, we can also regard Vy as a vector space over k. Let ¥, be a
k-subspace of Vx, that is, a subspace of Vi as vector space over k. Let
(Vx = K Qy V. be the vector space over K obtained from ¥V, by ascent
from k to K. Let f: K x V,,— Vj be defined by f(c, v) = cv (scalar product
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in V) for c € K, v € V. Then (f, V) is a pairing of K and ¥V}, so that there
exists a k-linear mapping (linear mapping of vector spaces over k) «: K &,
V.. — V such that the diagram

KxV, 25 K@ Ve

AN

Vk

is commutative. Now «(d ® v) = dv for de K, v e V,. It follows that the
mapping «: (V,)x — Vi is in fact K-linear, for we have

ac( Zj: d® v,) = a(z cd, @ vj) = ,Z, (cd)v; = ¢ :Z; do; = C(x(iz,j R v,)

1.7
ford,,...,d,eKand vy, ..., v,€V,.

We say that V, is a k-form of Vy if the mapping «: (Vi )x — V is an iso-
morphism of vector spaces over K. The passage from a vector space V' over
K to a k-form V. of Vy is called descent from K to k.

It is easily seen that a k-subspace V. of a vector space Vy over K is a
k-form of Vy if and only if a k-basis for ¥} is a K-basis for V. In particular,
for any vector space V over k, 1 ®, Vis a k-form of the vector space K @, V
over K obtained from V by ascent from k to K.
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Our objective here is to define the ring W, K of Witt vectors and establish
the properties of W, K needed in 3.9. The original account by Ernst Witt [24]
is quite nice, and we develop the material along similar lines.

We begin with a positive integer e, a prime number p and an integral
domain 4 containing the field Q of rational numbers as subring, and consider
the e-fold Cartesian product 4¢ of A4.

For xe A%, we let x,,...,x._, be the elements of 4 such that x =
(X5 . . -» X.—1). We call x; the ith major component of x. We let n(x) = x* =
(%%, ..., x2_,) for x € A° and call the mapping =: 4° — A°¢ the pth power
operator on A°.

Elements X, ..., X.-; of A define elements x@, ..., x*~D of 4 by the
recursion formulas

X9 =x, and x4V = (xM® 4 pitiy,,, O<i<e-—-2
where x = (xo,..., X.—;). We call x® the ith minor component of x for
X = (Xg,..., Xo—q) In A°.

Elements x@, ..., x®~V of A define elements x,, ..., x,_; of 4 by the
inverse recursion formulas

Xo=x® and x;,, = p‘l" 7 (x4FD — (xm)®) O<i<e-2

where (x)® denotes the ith minor component of (xo?, . . ., x,?) € A'*1. We let
[, ..., x¢=V] = (x,,..., x._,) where the x,,..., x,_, are defined in terms
of the x@, . .., x®~1 in this manner.

Upon writing out the above recursion formulas, we have the following
proposition. :

W.1 Proposition. The following conditions on elements X, ..., X,_;
and x@, ..., x¢~V of 4 are equivalent:
l. (xo, ceey xe_l) = [x(O), “eey x(e_l)];
2. X9 = x, and
x4+ = (x7)® 4 pt+ix, (0 <i<e—2) where
;X = (Xps..0s Xee1);
3. x® = x, and
XD = B e px P bk P, (0<i<e—2);
4. x, = x° and

1
Xip1 = le (x(l+1) _ (xgln + pxl,,4 4o 4 pixip)). D

162
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W.2 Definition. Let x = [x9,...,x®" D] and y = [y©, .., ye-Dn),
Then we let xoy = [x®@op©® x-Dope-D] where o is addition,
subtraction or multiplication in the ring A.

The above definition makes 4° = {(xo, ..., X,_1) | X, € Afor0 < i < e— 1}
into a commutative ring. We wish to study the major components of x + y
and xy for x, y in this ring 4°. The major zeroth and 1st components are given
by

(x + »o = X0 + yo,

@+ y)y = l% &+ )P — (x + )P = % (D + YO (xy + yo))

1
> (xe® + px1 + yo* + pyi — (%0 + ¥o)?),

1
=X +y - 7 (xo® + yo? — (X0 + yo)®),
(xy)o = YoJo>

(xy), = }, G® = (xy)e?) = % (xPy® — (x630)?)

1
=5 ((xo® + px1)(¥o” + Py1) — xo¥o?)

= Xo"¥1 + X1¥o® + pxXy1y1.

Note that the above zeroth and 1st major components of x + y and xy are
polynomials in X,, Xy, yo, 1. We show shortly that the other major compo-
nents of x + y and xy are also polynomials in the x;, y, with integer coeffi-
cients. This we then use to define x + y and xy for x, y € A,¢ (e-fold Car-
tesian product of 4,), where 4, is any commutative ring containing the field
Z, of p elements as subring. The resulting ring structure in A,® cannot be
introduced directly in the same manner as in A4°, because an element
(X0, - - ., Xe—1) of A4, cannot be expressed as [x©, . . ., x€~D] as it can be in
A°. In fact, the resulting ring 4,° is not isomorphic to the ring A, x --- X A4,
(outer direct product of rings) whereas the ring A° is isomorphic to the ring
A x --- x A (outer direct product of rings) under the mapping

X, ..., xC V> (xO, . .., xe-D),

For studying the major components of x + y and xy for x, yeAde itis
convenient to introduce the shift operator V: A¢— A°, defined as follows.

W.3 Definition. Letx = (x,,..., x,_;). Then V(x) = (0, x,, . . ., Xe_g).
W4  Proposition. Let x = [x?, ..., V). Then
Vi) = [0,...,0, p'x®, ..., pixe-1-9]
forO0<i<e—1land Vi(x) =0fori>e.

Proof. One sees directly from W.3 tha#t V(x) = [0, px<®, ..., px-2],
Now the above formula for ¥!(x) is obtained by iteration. []
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W.5 Corollary. V(x + y) = V(x) + V(y) for x, y € 4°.
W.6 Definition. For ac A, we let
{a} = (a,0,...,0) = [a,a?...,a" "]
W.7 Proposition. Via}=10,...,0,p'a,...pla* *""for0 <i<e—1.
Proof. Apply W4. []
W.8 - Corollary. For x = (xo,..., X,_1) € A° and a € A, have

e~-1 e—1
x = Z Vix} and {a}x = (axo, a’xi,...,a" 'x,_,) = Z Vi{a?'x}.
0 0

Proof. By W.7, we have

e—-1

e—1 .
z Vi{x;} = z [0,...,0,pix;, ..., p'x> 7]
0 0
But the latter sum is [x@, ..., x¢~V] = x, by W.2 and W.1. Next, we com-
pute {a}x. By W.2, this is
{@} x=[a,a? ...,a" |[xD,..., x¢" V] = [ax, ..., a”° *x¢-D]
By W.1, the latter is (axo, ..., @ "*x._1). [

W.9 Corollary. The zero element and identity element of A4°¢ are
0=(,0,...,00and 1 = (1, 0,.. ., 0) respectively.

W.10 Corollary. Let x,y € A° be disjoint, that is, x; = 0 or y, = 0 for
I<i<e—1.Thenx + y = (Xo + Yo»--+»Xec1 + Ve—1)-

Proof. We have

X+ y= 2 V) 3 Vi = 2 ViR + O)

= > Vi{x +»d
0
sincex; =0ory, =0for0<i<e—1 [

W.11 Proposition. (x1,...,%.—1) + (P15 s Vee1) = (Z1s . . » Zg_1) iN
A°~*if and only if (0, X5,...,X.—1) + (0, ¥1, ..., Ve-1) = (0, 2,...,2,_;) in
Ae.

Proof. Let X' = (X1,...,X._1) = [*x,...,°"%x] in 4! and x =
0, x1,. ..y Xe_q) = [0, xV, ..., x€-D] in A°. Then *x =x""+-- -+
P'xiyq and x4+D = 07" 4 px P 4 ... 4 pitlx, for 0 <i<e—2, by
W.1. Thus, **1x = px¢*+V for 0 < i < e — 2. Generalizing this notation, we
now have

X +y =@, 0% 1) + Bsev s Veor) =[x+ Yy,.. ., 7 x + -1y
p— [px(l) + py(l), . .,px(e—l) + py(e—l)]
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and x + y = [0, xP + y®, . x€"D 4 ye-D] Letting z = (x + ) =
©,z,...,2.,) and z' = (z;,...,2z,_1) = [*z,...,°"1z], we then have
i+l pzt+D = p(x + YYD = p(x4+D 4 pi+D) = px¢+D 4 pyitd  for
0<i<e—2andz = x + y, by the above description of X’ + y'. []

Our entire discussion applies to the ring of polynomials over Q in com-
muting indeterminants X, ..., X._;, Yo,..., Y,_;. Letting X = (Xo, ...,
X._1)and Y = (Y,, ..., Y,_,), we denote this polynomial ring by Q[X, Y].
Welet Z[ X, Y] be the subring of Q[ X, Y] generated by the X,, ¥, (0 < 7,5 <
e — 1), that is, the ring of polynomials in the X,, Y, with coefficients in Z.
The major components (X + Y), = a(X,, Y;) and (XY);, = m(X,, Y,) of
X + Y and XY have the property that (x + y), = a(x,, y)) and (xy);, =
my(x,, y) for x, y € Ae.

We claim that the coefficients of a,(X,, Y;) and m,(X,, Y,) are integers,
that is, that (X + Y), and (XY), are elements of Z[X, Y]. The proof is by
induction on e and is obvious if e = 1. We now take e > 1, assume the
assertion for f = e — 1 and proceed to prove it for e.

W.12 Proposition. Let x,ye A’. Then ((x + »)*), = (x* + %), (mod
pA) and ((xy)"), = (x"y"); (mod pA) for0 < j < f — 1.

Proof. By the induction hypothesis, the coefficients of the a(X,, Yy,
. my(X,, Y;) are in Z. Thus, using the formula (¢ + b)* = a® + b? (mod pA)
for a,be 4 (see E.14), we have ((x + )Y, — (" + y7); = (x + y); —
(" + 975 = (@x-y))° — asx,?, y¥) = 0 (mod pA). Similarly, ((xy)9; —
"y = (my(xe, p))® — my(x%?, y#) = 0 (mod pA). [

W.13 Lemma. Let x,ye A°and letj > 0. Then x, = y, (mod p’A) for
0<i<e—1ifand only if X = y® (mod p'*d) for0 < i< e — 1.

Proof. The proof is by induction on e and is trivial if e = 1. Next, let
e > 1 and assume the assertion for f = e — 1. Letting x; = y; (mod p’4) and
x® = y® (mod p**74) for 0 < i < f — 1, we have x,? = y (mod p**/4) for
0 <ix<f—1since j> 1 (see E.3.6). Applying induction to x7, y* with
i = e — 2, we now have (x)©~2 = (y")©~? (mod p¢~2*1+74). By condition
2 of W.1, it follows that x®-Y — pe=lx, | = ye-D _ pe-ly . (mod
pPT1*74), so that x¢~ = y€-b (mod p°~1+iA) if and only if x,_, = y,_,
(mod p’4). 0

W.14 Theorem. The polynomials (X + Y), = a(X,, ;) and (XY), =
m(X,, Y;) have integer coefficients for 0 < i < e — 1.

Proof. What we must show is that (X + Y); and (XY), are in Z[X, Y].
It suffices for this to verify the following sequence of equalities and congru-
ences for 1 < i < e — 1, in view of part 2 of W.1:
PX+ V)= (X + 1)° = (X + ¥y
= (X + Y)® — (X" + Y9~ (mod pZ[X, Y])
P'XY) = (XY)® — ((XY)ne-D
= (XY)® — (X*Y"¢=D (mod pZ[X, Y1)
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We verify only the first sequence, the verification of the second being pre-
cisely the same. The equality p'(X + Y); = (X + Y)® — (X + Y)»¢ Vis
just condition 2 of W.1. For the following congruence, simply note that
(X + V)™, = (X" + Y™), (mod pZ[X, Y]) for 0 < j < i — 1, by W.12, s0
that (X + Y)»)¢-V = (X* + Y%¢-Y (mod p'Z[X, Y]) by W.13. For the
last congruence, note that (X + Y)®¥ = X® 4+ Y® = (X79)4-D = piX; +
(YHUE-D 4 pty, = (XT)¢-D 4 (YH4-D = (X* + YH-D (mod p'Z[X, Y]),
by condition 2 of W.1. []

For any positive integer n, we let +n= +(1 + --- + 1) (» times), so
that tnx = +(x + --- + x) (n times) for x € 4. Note that n = [n, ..., n]
andthatn + x = [n + x@, ..., n + x¢~P]and nx = [nx©, ..., nx°~V] for
xeAandneZ. Now let X = (X,,..., X._,) as before, let Q[X] and Z[X]
be the rings of polynomials in the X, with coefficients in @ and Z respectively,
and note that the polynomials (pX); and V(X*), (0 <i < e — 1) have
coefficients in Z.

W.15 Proposition. (pX); = V(X™); (mod pZ[X])forO0 <i<e — 1.

Proof. Wehave (pX)® = pX® = p(x™~? + pix)) = px™ 0 = V(xH)®
(mod p**Z[X]) for 0 < i < e — 1, by W.1 and W.3. Thus, (pX), = V(x"),
(mod pZ[X])for0 < i< e — 1, by W.13. []

We now drop the assumption that the commutative ring 4 contain Q as
subring. Since the coefficients of the polynomials a,(X,, Yy), m(X,, Y,) are
integers, these polynomials determine polynomials ay(X,, Y,), (X, Yy)
obtained from a,(X,, Y,), m(X,, Y,) by replacing each coeflicient ¢ € Z by the
corresponding ¢ in the prime subring of A. We now define x + y, xy for
x,ye A® by the conditions (x A+ y); = &@(x, ys), (xy) = m(x,,ys) for
0 <i < e — 1. If A contains Q as subring, these are the same operations as
before.

W.16 Definition. The set A° together with the addition x + y and
multiplication xy defined above is denoted W,.4 and is called the ring of Witt
vectors over A.

Letting Z[X, Y, Z] = Z[X,, Y;, Z,] be the ring of polynomials in com-
muting indeterminants X, ..., Xe-1, Yo, .. .» Yec1,Z0» . - -, Ze—1, and letting
X=W&o...,Xe_1), Y=(Yo,..., Yo 1), Z =(2Zy,...,Z,_,), the proper-
ties of W, Z[X, Y, Z] go over to the properties of W, A by specializing X, Y, Z
to elements x, y, z of W, A. In particular, the axioms for a commutative ring
go over from Z[X, Y, Z] to W,A. Now suppose that the ring A has charac-
teristic p, that is, that 5 = 0 in 4. Then we have (x + )" = x" + y* and
(xy)" = x"y" for x, y € W,4, by W.12. And we have px = V(x") for x eW, A,
by W.15. Iterating the latter, we have px = V(x*). Consequently,
Vi)YV (y™) = (p'x)(py) = pip'xy = p'Hixy = V(") If A is a
field of characteristic p, we can extend the operations to the algebraic closure
Aig Of A. Then, letting x = #* and y = v™ with u, v € A, the formula just
derived yields V'(x)V/(y) = V*+i(x™y™) when applied to u, v.
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At this point, we have established most of the following theorem.

W.17 Theorem. Let A be a commutative ring. Then W,.4 is a commu-
tative ring and the major components of x + y, xy are polynomials in the
Xy, ys with coefficients in the prime subring of A. The ring W,4 has the
properties described in W.5, W.8, W.9, W.10, W.11, W.12. If 4 has
characteristic p and prime subring =,, then 7 is a homomorphism from W,4
, to Wed, px = V(x") for x € W.4 and the prime subring of W, 4 is W,m,
and is naturally isomorphic to Z,e. If A4 is a field of characteristic p, then

Vie)Vi(y) = Vi+i(x¥y™)  for x,y € W, A.

Proof. 1t remains only to show that if 4 has characteristic p, then the
mapping ¢: Z — W, A defined by ¢(n) = nfor n € Z is a homomorphism with
Kernel ¢ = p°Z and Image ¢ = W,m,, so that the prime subring of W, 4 is
Wen, and is naturally isomorphic to Z,.. We noted in Chapter O that ¢ is a
homomorphism. Obviously, Image ¢ is the prime subring of 4. We next show
that ¢(1) = 1 has additive order p°, so that Image ¢ has p° elements and
Kernel ¢ = p°Z. Since pl = V(1) = 0 and p’1 = V’/(1) # Oforf < e, 1has
additive order p®. Now Image ¢ has p° elements and is contained in W,x,.
The latter also has p® elements, so that W,m, = Image ¢ and is therefore the
prime subring of W, 4. [



A. Algebras

The material in Chapters 5 and 6 is best understood when the reader is
familiar with certain material on algebras, coalgebras and bialgebras. In this
appendix, we introduce the language of algebras, discuss tensor products of
algebras and describe the structure of finite dimensional commutative
algebras. This leads us into the remaining two appendices, C and B, where
we discuss coalgebras and bialgebras respectively.

A.1 Preliminaries

Let k be a field. Then a k-algebra is a k-vector space A together with k-
linear mappings 7: 4 ®, A—> A and ¢: k— A, called the product and
identity mappings of A respectively, such that the following associativity and
identity diagrams are commutative:

1
A0 A® A —21, 40,4

o] ;

AQd —— 4
w

ARA 25 4 <7 A®,. A

o | ne

k@A — A «—— ARk

Here, I, denotes the identity mapping from A to 4. We denote 7 (x @ y) by
xy and «1,) by 1, where x, y € 4 and where 1, is the identity element of k.
Then A can be regarded as k-vector space and as ring with product xy and
identity element 1,. Moreover, (cx)y = x(cy) = c(xy) force k and x, y € 4.
Conversely, any k-vector space and ring 4 whose product xy satisfies (cx)y =
x(cy) = c(xy) for c €k, x, y € A can be regarded as a k-algebra.

Any extension field X of k can be regarded as a k-algebra. And any
k-algebra A which is a field can be regarded as a field extension of k by
identifying k and the subfield k1, = {cl, | c ek} of 4.

If G is a monoid and if k[G] is a vector space over k having G as a basis,
then the prOdUCt (zyea cgg)(ZheG dhh) = zgeG ZheG (cydh)(gh) (an but ﬁnitely
many of the c,, d, being 0) makes k{G] into a k-algebra with identity 1, (the
identity of G). This k-algebra is called the monoid algebra of G over k or, if G
is a group, the group algebra of G over k.

168
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If 4,,..., A, are k-algebras, then the direct sum 4 = 4, + --- + A, of
the A; as vector spaces can be regarded as a k-algebra with product
@+ ---+a)bs+---+5b)=ab, +---+ a,b, and identity 1, =
ly, + -+ + 1,,. This k-algebra A is called the direct product k-algebra of
As,y ..., Ay

A homomorphism|isomorphism from a k-algebra A to a k-algebra B is a
k-linear mapping/bijective k-linear mapping f: 4 — B such that f(xy) =
FX)f(y) for x, ye A and f(1,) = 1. A subalgebralideal of a k-algebra A is
a subalgebra/ideal of A as ring. Any subalgebra of a k-algebra A can be
regarded as a k-algebra. If I is an ideal of a k-algebra 4, then A/I can be
regarded as a k-algebra.

A.2 Tensor products of algebras

If A and B are k-algebras, there are k-linear mappings 7, 5: (4 ®, B) Q;
(AQxB)—>AQ®,B and i g5:k—> A ®,B such that mig((x @ u) ®
(PRv) =xyQuv for x,ye A,u,ve B and 1,95(1) =1, 1, for cek.
Together with 7,5 and 1495, 4 ®, B is a k-algebra. Note that A ® 1 =
{*x®1lzlxedland 1 ® B= {1, ® u| uec B} are subalgebras of 4 ®; B.

Suppose that C is a k-algebra and that 4 and B are subalgebras of C. Let
AB denote the k-span of {xu | x € A, u € B}. Then there is a k-linear mapping
f: 4 ®, B— Csuch that f(4 ®, B) = AB. If fis injective, we say that 4 and
B are linearly disjoint over k. It is clear from T.1 that 4 and B are linearly
disjoint over k if and only if for any linearly independent set u,, ..., u, of
elements of B over k, xju; + --- + X.u, = 0 with x,,..., x, in 4 only if

x; = --- = x, = 0. Similarly, 4 and B are linearly disjoint over k if and only
if for any linearly independent set x, .. ., x, of elements of 4, x;u; + --- +
XU, = 0 with u,,...,u, in B if and only if u; = ... = u, = 0. It is also

clear from T.1 that 4 and B are linearly disjoint over k if and only if B has a
basis {u; | B € S} such that each element of AB can be written as Js.g X5u;
where the x; are uniquely determined elements of 4. Similarly, 4 and B are
linearly disjoint over k if and only if {x,u; | € R, B &S} is a basis for AB
over k for any basis {x, | a € R} for 4 over k and any basis {u; | B € S} for B
over k. If the elements of A commute with the elements of B, it is clear that
A and B are linearly disjoint over k if and only if B and A are linearly disjoint
over k.

If f: A ®, B— C is an isomorphism of k-algebras, we say that C is the
internal tensor product of A and B over k and we write C = AB (internal
tensor product of k-algebras). For C to be the internal tensor product of the
subalgebras 4 and B, it is necessary and sufficient that the elements of 4
commute with the elements of B, C = AB and A4 and B are linearly disjoint
over k. If the elements of 4 commute with the elements of B, then C is the
internal tensor product of 4 and B if and only if {x,u; | c€R,BeS} is a
basis for C over k where {x, | « € R} is a basis for A over k and {u, | B € S} is
a basis for B over k.

Note that for any two k-algebras 4 and B, 4 ®, B = (4 ® 1)1 ® B)
(internal tensor product of k-algebras).
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Let A be a k-algebra and K an extension field of k. Then the k-algebra
K ®, A can be regarded as a vector space over K. One sees easily that
K ®, A is then a K-algebra, called the k-algebra obtained from A4 by ascent
from k to K.

Suppose next that K is a field and A, a K-algebra. If k is a subfield of K
and A4, a k-form of Ay as vector space over K, then A, is an algebra k-form
of A if A, is also a subring of Ax. Any algebra k-form A, of A can obviously
be regarded as a k-algebra such that Ax and K ®; A4, are isomorphic.

A.3 Finite dimensional commutative algebras

A k-algebra A4 is commutative if A is commutative as a ring. We assume
for the remainder of this section that A4 is a finite dimensional commutative
k-algebra.

Since A is finite dimensional, 4 is an integral domain if and only if 4 is a
field. For if 4 is an integral domain and x € A — {0}, then the linear trans-
formation f: A — A defined by f(y) = xy has kernel {0} so that fis injective,
hence surjective. Thus, f(») = 1, and xy = 1, for some y € 4 and x is a unit,

If M is a maximal ideal of 4, then A/ M is a field, hence an integral domain,
so that M is a prime ideal. In the present context, the converse is also true.
For if M is a prime ideal, then 4/M is an integral domain, so that 4/M is a
field by the preceding paragraph.

A subset S of A4 is multiplicative if S is nonempty, S does not contain 0 and
xy € S for all x, y € S. Note that if M is a prime ideal of 4, then S = 4-M
is a multiplicative subset of 4. Now let S be any multiplicative subset of A.
An ideal M of 4 is S-maximal if M N S is the empty set and the only ideal M’
of A containing M such that M’ N S is empty is M’ = M. Let M be an S-
maximal ideal of 4. We claim that M is a prime ideal of 4. Suppose that M is
not prime and choose a, b € A-M such that ab € M. The ideals M + Aa and
M + Ab properly contain M, so that there exist s€ (M + Aa) N S and
te (M + Ab) N S. But then one sees easily that st € M N S, a contradiction
since M N S is empty. Thus, M is a prime ideal of 4.

The set Nil 4 = {a € 4 | a is nilpotent (a® = O for some n)} is contained
in every prime ideal of A, as one sees immediately from the definition of
prime ideal. If b ¢ Nil 4 and S = {b, b%, . . .}, then S is a multiplicative subset
of A and b¢ M where M is any S-maximal (hence prime) ideal of A4. It
follows that Nil A4 is the intersection of all prime ideals of 4. In particular,
Nil 4 is an ideal of 4, called the nil radical of A.

We say that A is Jocal if 4 has only one maximal ideal. Since an ideal of 4
is maximal if and only if it is prime, the maximal ideal M of a local algebra 4
is M = Nil 4. Conversely, if A has a maximal ideal M contained in Nil 4,
then A is local since every maximal ideal of A4 is prime, hence contains Nil 4,
hence coincides with M.

Let I be an ideal of 4. Then the k-span I* of {x;---x; | x1,..., x; €I} is
anidealof 4dandI> [2> ... > Ji~1 > [iforalli. If I' = {0} for some i, we
say that [ is nilpotent. If I is nilpotent, then certainly 7 < Nil 4. Conversely,
every ideal I of A contained in Nil 4 is nilpotent. For if this were not the
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case, we could take a nonnilpotent ideal I of 4 contained in Nil 4 with
dimension as small as possible. Since such an 7 would not be nilpotent,
I? # 0. Since [ is nilpotent if 72 is nilpotent, 72 could not be nilpotent. Since
I? < I, it would follow that 72 = I. Thus, there would be ideals J of 4 con-
tained in I such that the k-span IJ of {xy | x € I, y € J} would be nonzero.
Taking a minimal such J and taking b € J such that the ideal Ib = {xb | x € I}
is nonzero, we would have Ib < J < [ and I(Ib) = I*b = Ib # {0}. By the
minimality of J, we would have Ib = J. Since b € J, we would have ab = b
for some a € I < Nil 4. But then (1 — @)b = 0. Choosing z such that a® = 0,
we would have a’'(1 —a)=1 where @' =1+ --- 4+ 4" Thus, 1 —a
would be a unit, and we would have b = 0, a contradiction. Thus, every ideal
I of A contained in Nil 4 is nilpotent.

The ideal Nil 4 of 4 is a nilpotent ideal of 4 which contains every nil-
potent ideal of 4, by the preceding paragraph. It follows that A is local if and
only if 4 has a nilpotent maximal ideal M.

Ideals 7 and J of 4 are comaximal if A = I + J. If I and J are ideals of 4,
then IJ < InJ. If, furthermore, I and J are comaximal, then 1A J <
AINJT) =T+ J)YINJ)< 1J. Thus, IJ = I nJ if I and J are comaximal
ideals of A.

If I and J; are comaximal ideals of 4 for 1 < i < n, then I and the k-span
I8 of {x1-- X, | %, €, -+, X, €J,} are comaximal ideals of A4, as we
now show by induction. If n = 1, this is trivial. If # > 1 and if 7 and J =
113J; are comaximal, then 4 = I + J; = I + J and

A=T+)A+N=1+1JT=I+]]
1

so that 7 and []} J; are comaximal.

If I and J are comaximal ideals of 4, then I and J* are comaximal for all
n 2 1, by the preceding paragraph, hence I™ and J™ are comaximal for all
m,n = 1.

Ifideals I, . . ., I, are pairwise comaximal, then 7 I, = (7 I,. We prove
this by induction on n, the case n = 2 being already established. Thus, let
n > 2 and suppose that [ 3 Z; = (% L. Then I, and J = [T% ] are comaximal,
sothat I} [ =LJ=I,nJ = L.

Now suppose that [, . . ., I, are pairwise comaximal ideals of 4 such that
[IRL,=0. Let 4y =T[4 1, for 1 <i<n Then A=A, +---+ A4,
(direct) and 4 = A, + I, (direct) for 1 < i < n. We prove this by induction
on 4. If n = 2, then it is enough to note that 4, = I,, A, = I,, 4, N A, =
LNL=LL={0} and A=L +I,=Ay+ A, =1, + A, = A, +1,.
Suppose next that # > 2 and consider the n — 1 pairwise comaximal ideals
L1, I, ..., I,. By induction, we have 4 = B+ Az + --- + A4, (direct)
where B = [§ I, We may assume that B s {0}. Writing 1, = e + f where
ecBand fe A3 + --- + A,, one sees easily that ef = 0, hence that e? = e
and f2 = f. And one sees immediately that B = de = {ae | a € A} can be
regarded as a k-algebra with identity 1; = e. Now 4, = I,Band 4, = I, B,
B = A4, + A, by the comaximality of I, and I,. Since 4, N A, = A, A, =
{0}, we therefore have 4 = 4, + A, + A; + -+ - + A, (direct). Since 7, and
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A, are comaximal and I; N 4; = LA; = {0}, we have 4 = A4, + I, (direct)
forl <i<n

We noted earlier that Nil A is the intersection of all of the prime ideals of
A. Since A is finite dimensional, Nil 4 is the intersection of finitely many
distinct prime ideals M, ..., M, and these prime ideals are maximal ideals.
Choose m such that (Nil 4)" = {0}and let I, = M;"for 1 < i < n. Since the
M,, ..., M, are distinct maximal ideals of 4, they are pairwise comaximal.
Thus, the ideals I, . . ., I,, are pairwise comaximal. Moreover,

Iﬁ L= I:[ M = (D Mi)m = ((1\ Mi)m = (Nil 4 = {0}.

Thus, 4 = 4, + --- + A, (direct) and A = A, + I, (direct) where A4; =
[L;#:;for 1 < i < n. One sees easily that 4; may be regarded as a k-algebra
isomorphic to 4/I; = A/M;™. The k-algebra 4/M;" is local with nilpotent
maximal ideal M/M,™. Thus, A is the direct product k-algebra of the local
k-algebras A, ..., A,. Note that the only maximal ideals of 4 are M, ...,
M,. For if M were another maximal ideal of A4, then M and []; I, = {0}
would be comaximal.

If M is a maximal ideal of 4, then 4/M can be regarded as a finite dimen-
sional field extension of k. We say that 4 is split if A/M is of dimension one
for every maximal ideal M of A4, in which case 4 = k1, + M (direct) for
every maximal ideal M of A. Note that 4 is split if and only if the local
k-algebras 4,, ..., A, of the preceding paragraph are split.

If Nil 4 = {0}, we say that A4 is semisimple. If A is semisimple, then
we may take m = 1 in the proof that 4 = 4; + --- + A, (direct), so that 4,
is isomorphic to the field 4/M; for 1 < i < n. It follows that 4 is semisimple
if and only if 4 has a decomposition 4 = 4; + - - - + A, (direct) where the
A, are ideals of 4 which as k-algebras are finite dimensional field extensions
of k. If A is split, then 4 is semisimple if and only if 4 = 4, + --- + 4,
(direct) where the A4, are ideals which as k-algebras are isomorphic to k.
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In this appendix, we develop the theory of coalgebras. The preliminary
definitions and some introductory observations are given in C.1. Tensor
products of coalgebras and the processes of ascent and descent are discussed
in C.2. In C.3, a coalgebra C and its dual algebra 4 = C* are related. The
dual algebra A = C* is used in studying C. The minimal subcoalgebras of C
and the colocal components of C are discussed. Finally, we describe the dual
coalgebra of an arbitrary algebra. In C.4, we develop the theory of co-
commutative coalgebras.

C.1 Preliminaries

Let k be a field. Then a k-coalgebra is a k-vector space C together with
k-linear mappings A: C— C ®, C and «: C—k, called the coproduct and
coidentity mappings of C respectively, such that the following coassociativity
and coidentity diagrams are commutative:

C®.C®.C 28k cg.c
h@A[ [A
CR®,C < C
A

C®.C <2 ¢c-2,ce.cC

e®kl l 1&@8

k®kc C ;C®kk

Here, I denotes the identity mapping from C to C. We denote A(x) by
A(x) = 3, x ®, x; (i ranging over some set and ;x or x; being 0 for all but
finitely many 7). The ;x, x; are certainly not unique. However, at times we
shall arbitrarily choose the x;, say, to be a basis for C, so that the ;x for which
A(x) = 2;:x ®y x; are then uniquely determined by x. The ;x and x; are
referred to informally as the left and right cofactors of x. It is convenient at
times to write Ag for A and & for e.

The coproduct A and coidentity ¢ of a k-coalgebra C satlsfy the co-
associativity and coidentity equations

Z %) @ (%); @ x; = 2 X Q5 (x) ® (x1);

i,

x = Z (%)%, = Z s(x)ix.
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If A is a finite dimensional algebra, then the product A ®r A — A and
identity ¢: £k — A4 induce mappings A: A* - A* ®, A* and e: A* — k such
that, for x € 4* and x, x4, ..., ., X, € A%,

I. Alx) = 3 x @ x; <= x(ab) = 3; x(a)x(b) for all a, be 4;
2. &(x) = x(1,).

These mappings A and e are the adjoints A = #»* and ¢ = * of = and «, if one
identifies 4* ®, 4* with (4 ®;, 4)* and k with k*. The associativity and
identity properties of = and . lead to the coassociativity and coidentity
equations for the mappings A and e, so that C = A* together with A and
e is a k-coalgebra, called the dual k-coalgebra of A. If A is infinite dimensional,
then 4* ®, A* and (4 ®, A)* cannot be identified and 4* cannot always be
given a k-coalgebra structure in the above prescribed way. It is possible to
give the subspace 4° of “continuous” elements of A* a k-coalgebra structure
in the above prescribed way. The details are given at the end of C.2.

Since we can identify k£ and its dual space k*, k may be regarded as k-
coalgebra, and we have A(l,) = 1, ® 1, and &(1,) = 1,.

If G is any set and if k[G] is a vector space with basis G, then k[G] may be
regarded as a k-coalgebra such that Ag = g ® g and &(g) = 1 for all ge G.
This k-coalgebra is called the group k-coalgebra of G. If C is a vector space
over k, C° a subspace of C of codimension 1 and e € C — C°, then C may be
regarded as a k-coalgebra such that Ae = e @ e,e(e) = land Ax = e @ x +
xQ®e, e(x) =0forall xe CO

If the C; (i€ S) are k-coalgebras, then the vector space direct sum
C = s C; can be regarded as k-coalgebra such that

AG) =2 A(x)  and  e(x) = > a(x),
ies i ics
where x = s X;, X; € C; and the coproduct and coidentity for C, are A, and
g for i e S. Note that k[G] = >, kg is an instance of this.

A homomorphism[isomorphism from a k-coalgebra C to a k-coalgebra D
is a k-linear mapping/bijective k-linear mapping f: C — D such that for
xeC and Ay(x) = 3;x @ x;, we have Ap(f(x)) = 2, /(%) ® f(x); and
such that for x € C, ec(x) = ep(f(x)). These conditions on f are equivalent to
the commutativity of the diagrams
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A subcoalgebra/coideal of a k-coalgebra C is a subspace D of C such that
A(D) = D ®, Dja subspace P of C such that A(P)c PR C+ C® P and
e(P)’= {0}. Any subcoalgebra of a k-coalgebra C can be regarded as k-
coalgebra. If P is a coideal of a k-coalgebra C, then C/P can be regarded as a
k-coalgebra such that the usual quotient mapping C — C/P is a homo-
morphism, since C/P ®,; C/P can be identified with (C ®, C)/(P &, C +
C ®y P).

A measuring representation of a k-coalgebra C from a k-algebra 4, to a
k-algebra A4, is k-linear mapping p: C— Hom, (4, 4;) such that
p(x)(14) = e()1,, and p(x)ab) = 5 p(X)@p(x)(b) for all xeC and
a, be A. A measuring representation of a k-coalgebra C on a k-algebra A4 is
a measuring representation of C from A4 to A4.

Note that a measuring representation p of a k-coalgebra C from a k-
algebra A4 to k is a k-linear mapping p: C — 4* = Hom, (4, k) such that
p(x)(1,) = &(x) and p(x)(ab) = >; p(ix)}a@)p(x;)(b) for all xe C and a, b € A.
In this case, p is therefore simply a homomorphism from the k-coalgebra C
to the k-coalgebra A° described at the end of C.3.

The kernel Kernel p = {x € C| p(x) = 0} of a measuring representation
p of a k-coalgebra C is not always a coideal of C.

C.2 Tensor products of coalgebras

If C and D are k-coalgebras, then there are k-linear mappings
Acep: C ®r D — (C Q. D) ® (C &, D) and ecgp: C Q@ D — k such that
Acop(x ®Y) = 215X ® ;¥ @ X ® ¥; and eceop(x ® ¥) = ex(x)ep(y) for all
xeC and ye D, where Ay(x) = 2;:x @ x; and Ap(y) = >, ;¥ ® y;. To-
gether with Acgp and ecgp, C Q. D is a k-colagebra.

Let C be a k-coalgebra, let K be an extension field of k and regard K ®,, C
as vector space over K. Let Ax: K®; C— (KQ;, C) Qg (K®, C) and
ex: K ®, C — K be the K-linear mappings such that Ax(1 ® x) = 3, (1 ® x)
® (1 ®x;) and ex(l ® x) = e(x) for xe C and Ax = 3, ;x ® x;. Then
K ®, C together with A and e is a K-coalgebra, called the K-coalgebra
obtained from C by ascent from k to K.

A vector space k-form C,, of a K-coalgebra Cy such that A(C,) = C, ®x C
(image of C,, x C, in Cx ®x Cx under ®) and such that ¢(C,) < k is called
a coalgebra k-form of Cy (see T.4). Any coalgebra k-form C, of Cy can
obviously be regarded as a k-coalgebra such that the K-coalgebras C, and
K ®, C, are isomorphic.

C.3 Duality

Let C be a k-coalgebra. The field k is isomorphic to its k-dual space k* by
the mapping sending each ¢ € k to its left translation ¢, € k*. And there is a
k-linear injection from C* ®, C* into (C ®, C)* which maps each a ®, b
(a, be C*) to the element a-b of (C ®; C)* such that (a-b)(x ® y) =
a(x)b(x) for all x,ye C. Thus, the coidentity and coproduct mappings
e: C—kand A: C— C ®, C induce via their adjoints ¢* and A*, k-linear
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mappings ¢: k — C* and =: C* @, C* — C* such that «(c) = e*(c,) for
cekand n(a ® b) = A*(a-b) for a, b € C*. Letting A = C*, (1,) = 1, and
m(a @ b) = abfor a, be A, we have 1, = ¢ and (ab)(x) = >, a(;x)b(x;) for all
xeC and a,be 4, where Ax = 35, ;x ® x;. It follows easily from the co-
identity and coassociativity equations for C that A together with the product
ab is an algebra with identity 1,. Furthermore, one sees easily that for x e C
and X%, X5,..., 2% X%, €C, Ax = 3, x ®x; if and only if (ab)(x) =
>ia(x)b(x;) for all a,be A. This k-algebra A = C* is called the dual
k-algebra of the k-coalgebra C.

Any k-coalgebra C has a measuring representation p from its dual
k-algebra A = C* to k. For xe€ C, p(x) is defined by p(x)(@) = a(x) for
ac A (so that p is the canonical imbedding of C in C**). The equations
p(x)(1,4) = e(x) and p(x)(ab) = >; p(:x)(a)p(x;)(b) are simply translations of
the earlier equations 1,(x) = &(x) and (ab)(x) = 3, a(;x)b(x;) for x € C and.
a, b € A. Note that Kernel p = {0}.

If D is a subcoalgebra of C, then D* = {ac A | a(x) = 0 for all x € D} is
an ideal of 4. Forif xe D and Ax = 3, ;x ® x; where the ;x, x; are in D, then
a € D* implies that (ab)(x) = 3, a(:x)b(x;) = 0 and (ba)(x) = 3, b(;x)a(x;) =
0 for all b € 4. Suppose, conversely, that Iis an ideal of 4 and let D = I+ =
{xe C|a(x) = 0forall aeI}. Let {x, | « € R} be a basis for D and choose a
set {x; | B € S} such that {x, | « € R} U {x; | B € S} (disjoint union) is a basis
for C. Let xe D and Ax = 3, . x ® X, + D sx ® x;. We claim that
gx = 0 for all Be S and x, € D for all « € R. For this, note that for b e I,

0 = (ab)(x) = 2 a(x)b(x,) + ; a(gx)b(xs) = ; a(sx)b(x5)

= b(z a(ﬁx)xﬁ) for all a € A.
]

Thus, we have X, a(sx)x; € I* = D for all a € A. Since the set {x, | B €S} is
a basis for a subspace of C complimentary to D, it follows that 3, a(;x)x,; = 0
for all a e 4 and a(,x) = O for all z€ 4 and all B € S. It follows that ;x = 0
for all B S. Thus, Ax = 5, ,x Q x, where {x, | « € R} is a basis for D. For
ael, we now have 0 = (ab)(x) = >, a(.x)b(x,) = b(C, a(,x)x,) for all
be A. Since A = C* separates the points of C, we therefore have
> a(ex)x, = 0for all a € I, so that a(,x) = 0 for all a € I and all « € R. Thus,
the ,x are in /* = D and D is a subcoalgebra of C.

It follows from the preceding paragraph that a subspace D of C is a sub-
coalgebra of C if and only if D' is an ideal of A4, for we always have D =
(D). Note that the k-algebra 4/D* can be regarded as the dual k-algebra of
a cosubalgebra D of C.

If P is a coideal of C, then P* is a subalgebra of 4. For we have 1, =
e P*. And for a, b € PL, we have ab € P* since (ab)(x) = 3; a(ix)b(x;) +
> a(;x)b(x;) = 0 for x € A where the cofactors of x are taken so that ;x € C,
xi€P, ;xeP, x; e C for all i, j. Conversely, let B be a subalgebra of A. Then
P = B*is acoideal of C. For ¢(x) = 0 for x € P, since ¢ = 1, € B. And we see
for x € P, {x, | « € R} a basis for P and {x, | B € S} a basis for a subspace of C
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complimentary to P that Ax = 3, ,x ® X, + 24 sx ® x; where zx is in
P = B* for B €S. Namely, we have

0 = (ab)(x) = ; a(,x)b(x,) + BZ a(gx)b(xg) = 82 a(sx)b(xs)

= b(z a(,gx)x,g) for all a, b € B,
B

thus 34 a(,x)x; € B+ = P for all a € B, thus 0 = X, a(,;x)x, for all a € B, thus
a(,x) = 0 for all a € B and all Be S. Thus, P is a coideal of C.

It follows from the preceding paragraph that a subspace P of Cis a coideal
of C if and only if P* is a subalgebra of 4, for we always have P = (P*)".
Note that if P is a coideal of C, then the k-algebra P+ can be regarded as the
dual k-algebra of the k-coalgebra C/P.

The kernel C° = {x € C | &(x) = 0} is the coideal 1,* orthogonal to the
subalgebra k1, of A.

For any collection {D, | « € R} of subcoalgebras of C, it is obvious that
the sum of subspaces 3, D, is a subcoalgebra of C. Furthermore, (M, D, is a
subcoalgebra of C, since (N, D = (3, D,*)* and 3, D,* is an ideal of 4. In
the same way, > P; is a coideal of C for any collection {P; | 8 € S} of coideals
of C, for (55 Ps)* = (" Ps* and (") P,* is a subalgebra of 4.

We now let x be an element of the coalgebra C and let a, b be elements of
the dual algebra 4 = C*. Then x% ®x are well defined by the equations
x* = 3, a(x)x; and ®x = 3, b(x,);x where Ax = 3;x ® x;. Note that x* is
linear in x and in @ and that bx is linear in x and in b. Note also that b(x*) =
(ab)(x) = a(®x). It follows that Ax® = 3, ;x* ® x,, since (bc)(x*) = (abc)(x) =
53 (@b)(x)e(x) = X4 b(x¥)c(x;) for all b, ¢ € A. And A°x = 2, x @ °x;, since
(ac)(x) = (ach)(x) = 3; a(ix)(cb)(x)) = 3y a(1x)c(®x;) for all a, c€ 4. We have
xla = lax = x since 3, e(:x)x; = Dy e(x)x = x. We also have (x*)’ = x,
since (x%)? = 3, b(x¥)x; = 3, (ab)(ix)x; = x@¥. Similarly, *(°x) = (@b since
90x) = 3 aCx)x = >y (ab)(x)x = “Px. Finally, we have °(x*) = (*x)?
since c(®(x%) = (ch)(x%) = (ach)(x) and ¢((>x)?) = (ac)(x) = (acb)(x) for all
c e A. We denote *(x%) = (°x)* by *x°.

At this point, C is a two-sided 4-module in the sense that we have defined
elements x%, °x of C for x € C and q, b € A such that

1. x@is linear in x and a, and ®x is linear in x and b;

2. x4 = lax = x for all xe C;

3. (x%) = x“ and *(*x) = “x forall xe C and a, b€ 4;
4. ¥(x*) = (°x)*foralla,be 4, xe C.

An A-submodule of C is a subspace D of C such that °x € D and x* € D for all
x e D and a, b € A. Note that for x € C, the k-span 4x* of {*’x* | a, b € A} is an
A-submodule of C containing x.

For any x € C, the 4-submodule “x4 is finite dimensional. To see this, let
Ax = 37 x ® x,; and note that the k-span x* of {x* | a € 4} is finite dimen-
sional since x% = 37 a(;x)x, is contained in the k-span of xi,..., x, for all
b € A. Similarly, the k-span 4x of {®x | b € A} is finite dimensional. Let x# and
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4x be spanned over k by x%, ..., x* and %ix, .. ., %x respectively, where we
specify thata;, = b; = 1,. Thenthe k-span Dof {"x% |1 < i <r,1 <j < s}
is an A-submodule of C. For if ae A, we have (Mx%)* = b(xu®) =
%(cix® + - -+ + x%) = ¢P1x% + -+ - + ¢%x%, where the ¢,,..., c, € 4 are
chosen such that the element x@® of x4 is ¢;x% + .-+ 4 ¢,x%, so that
(®1x*)* e D. And if b € A, we have *(%x%) € D by a similar argument. Since D
is an A-submodule and D contains x = %1x%, it follows that 4x4 = D and
therefore that “x4 is finite dimensional.

A subspace D of C is a subcoalgebra of C if and only if D is an A-sub-
module of C. For suppose that D is a subcoalgebra of C, and let x € D and
a,be A. Then Ax x 3, ,x ® x;, where the ;x, x; are in D. Thus, D contains

= >;a(;x)x, and °x = 3 b(x;));x. Conversely, suppose that D is an A-
submodule of C. We claim that D* is an ideal of A. Thus, let a € D+ and
be A. Then we have (ab)(x) = a(®x) = 0 for all xe D, so that ab e DL
Similarly, we have (ba)(x) = a(x®) = O for all x € D, so that ba € D*. Thus,
D*isanideal of 4 and D is a subcoalgebra of C.

Every element x of a coalgebra C is contained in some finite dimensional
subcoalgebra of C. For “x4 is a finite dimensional subcoalgebra of C con-
taining x, by the preceding two paragraphs.

A subcoalgebra D of C is minimal if D # {0} and the only nonzero sub-
coalgebra E of C contained in D is E = D.If D is a minimal subcoalgebra of
C, then D = “x* for every nonzero element x of D. Thus, every minimal
subcoalgebra D of C is finite dimensional. It follows that a subcoalgebra D
of Cis minimal if and only if the ideal D* of 4 is a maximal ideal of A.

Let D be a minimal subcoalgebra of C and suppose that {D, |« € R} is a
collection of subcoalgebras of C such that D < 3, D,. Then D < D,forsome
« €R. To see this, note first that D < 37 D,, for suitable oy, ..., «, in R,
since D is finite dimensional. Next, let J; be the ideal I, = D, * of 4 for 1 <
i < n and let I be the maximal ideal 7 = D* of 4. Then I > (N} I, since
D* > (3% D)t = Nt D,* It follows that I = I, for some i,. For otherwise
A = I + I, for all i, by the maximality of 7, sothat 4 = I + I, - - - I, (for the
same reasons as those given in A.3 for commutative algebras) and therefore
A =1+ (i1, a contradiction. But from I > [, we have D < D, since
D = D' = I*and D,, = D, ' = I, ~.

Every nonzero coalgebra C has minimal subcoalgebras, since C has non-
zero finite dimensional subcoalgebras. If C has precisely one minimal sub-
coalgebra, then we say that C is colocal.

For any minimal subcoalgebra D of C, C(D) denotes the subcoalgebra
>zep E where D is the set of colocal subcoalgebras of C containing D. The
subcoalgebra C(D) of C is colocal. For if D’ is a minimal subcoalgebra of
C(D), then D' = E for some colocal subcoalgebra E of C containing D,
whence D’ = D. Since the colocal subcoalgebra C(D) of C contains D and
every colocal subcoalgebra of C containing D, we call C(D) the colocal
component of C containing D.

Let M be the set of minimal subcoalgebras of C. The sum Yy C(D) is
then direct. Forif DeMand M’ = M — {D}, then C(D) N\ Spcpr C(D)) =
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{0}. Otherwise, we would have D < 3.y C(D’), so that D < C(D’) and
D = D' for some D' € M’, a contradiction. In particular, the sum S pey D is
direct. We call 3 pcn D the socle of C and 3 C(D) the hypersocle of C.

For the sake of completeness, we close this section with a brief description |
of the dual k-coalgebra C = A° of an arbitrary k-algebra A. For this, let 4*
be the k-dual space of a k-algebra 4, let x € 4* and let a, b € A. Let x* and bx
be the functions on 4 defined by x%(c) = x(ac) and *x(c) = x(cb) for all ¢ in A.
Then x* and °x are elements of 4* and x%(b) = x(ab) = °x(a). Note that x4 is
linear in x and q, and that bx is linear in x and b. Note also that x4 = lax =
X, (x%)° = x9, 9(°x) = @x and ®(x%) = (®x)%, as one sees from the equations
xta(c) = x(c) = 'ax(c), (x)°(c) = x%bc) = x(abc) = x“P(c), *(°x)(c) =
*x(ca) = x(cab) = “Px(c), ®(x¥)(c) = x*(cb) = x(acb) and (°x)*(c) = bx(ac) =
x(acb) for ce A. Thus, A* is a two-sided A-module in the sense described
earlier in the section. For x in A*, the k-span “x* of {*x% | @, b € 4} is an A-
submodule of 4*. We let A° = {x e A | “x* is finite dimensional} and note
that 4° is an 4-submodule of A*.

It is clear from earlier parts of this section that 4° is the largest subspace
of A4* which possibly could have coidentity and coproduct mappings A° and
&® such that &°(x) = x(1,) and A%x) = 3, X ® x, if and only if x(ab) =
21 1:x(@)xy(b) for all a, b € A, where x and the ,x, x; are in 4°. We now proceed
to produce such mappings A° and ¢° and show that C = A° together with A°
and &° is a k-coalgebra. The mapping &° is, of course, defined by £%(x) = x(1,)
for xe C = A°. Next, let xe C = A4°, and consider the finite dimensional
A-submodule D = “x4 of C = A4°. The subspace D* = {ae 4 | x(a) = 0 for
all x € D} is an ideal of 4. Forif ae D*, be 4 and y € D, we have *y, y* € D,
so that y(ab) = ®y(a) = 0 and y(ba) = y*(a) = 0. Since D is finite dimen-
sional, the k-algebra 4 = A/D* is finite dimensional and D may be regarded
as the k-dual space 4* of 4, an element y of D being regarded as the element
of 4* which maps the element @ = g + D* of 4 = A[D* to y(@) = y(a) for
all a € 4. Thus, there is a unique linear mapping A, from D to D ®, D map-
ping each y € D into an element 3,y ® y, of D ®, D such that y@b) =
1@ y(b) for all a,be 4, hence such that Wab) = 3, ,y(a)y,(b) for all
a,be A. Returning to the original element x of C = A°, define Ad(x) =
211X ® x; (image of x under the mapping A, just described). Thus defined,
A®is a k-linear mapping from C to C ®,, C such that for x € Cand ,x, x,, . . .,
2% X, € C, A%X) = 3 x ® x; if and only if x(ab) = 3, x(a)x,(b) for all
a,be A. One now easily shows that C = 4° together with A°, & is a k-
coalgebra, the proof being the same as the proof of 5.3.8. The coalgebra
C = A°is called the dual k-coalgebra of the k-algebra A.

C.4 Cocommutative coalgebras

A k-coalgebra C is cocommutative if Ax = 24 ® x; if and only if
Ax = 3; x; ® ;x for all x € C. From the equations (ab)(x) = > a(x)b(x;) and
(ba)(x) = 2y b(x)a(x;) forxe C,Ax = 3, x @ x;and a,be 4 = C * we see
that the k-coalgebra C is cocommutative if and only if its dual k-algebra
A = C* is commutative.
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Suppose that C is a finite dimensional cocommutative k-coalgebra. Then
the dual k-algebra 4 = C* is a finite dimensional commutative algebra. We
showed in A.3 that 4 = 37 A4, (direct) where the A4; are ideals of 4 such that
A/l is a local k-algebra for I; = 3,4; 4; (1 < i < n). Letting D, be the sub-
coalgebra D, = I;* of C, we then have C = 3; D; (direct). Since we may regard
the local k-algebra 4/ D;* = A/I, as the dual k-algebra of D;, the subcoalgebra
D, is colocal with unique minimal subcoalgebra M;* where M, is the unique
maximal ideal of A4 containing I;.

For the remainder of this section, we assume that C is an arbitrary co-
commutative k-coalgebra. Then C = >,y C(D) (direct) where M is the set
of minimal subcoalgebras of 'C. To see this, let x € C and let C,. be the finite
dimensional subcoalgebra C, = “x* where A is the dual k-algebra of C.
Then C, = 3; D; (direct) where the D, are colocal subcoalgebras of C,, by
the preceding paragraph. It follows that C, < Jcem C(D). But then C =
Spem C(D), since C = Jyec Cx. That the sum Spe C(D) is direct was
shown in C.3.

If C = 3 pew D where M is the set of minimal subcoalgebras of C, we say
that C is cosemisimple. For C to be cosemisimple, it is necessary and sufficient
for the dual k-algebra of every finite dimensional subcoalgebra of C to be
semisimple in the sense of A.3.

The subcoalgebras of C of dimension one are the subcoalgebras D of C of
the form D = kg (k-span of g) where g is a nonzero element of C such that
Ag = g ® g. To see this, let D be a subcoalgebra of dimension one and take
de D — {0}. Then D = kd, so that Ad = ¢,;d ® c;d = c(d ® d) for suitable
¢, Cg, ¢ € k. By the coidentity equation, d = ce(d)d, so that ¢ # 0. Letting
g = cd, we therefore have D = kg and Ag = g ® g. The nonzero elements
g of C such that Ag = g ® g are called the grouplike elements of C. The set
of grouplike elements of C is denoted G(C). Note that for g € G(C), &(g) = 1.
For the coidentity equation implies that g = #(g)g for all g € G(C). For any
grouplike element g of C, we let C(g) denote the colocal component C(kg)
containing the minimal subcoalgebra kg of C, and we call C(g) the colocal
component of C containing g. Note that G(C) is a linearly independent subset
of C, since the sum X, ¢ C(g) is direct.

We say that C is cosplit if every minimal subcoalgebra of C'is of dimension
one. Thus, Cis cosplitif and only if C = ¢, C(g) (direct). More generally,
C has a unique maximal cosplit subcoalgebra, namely ;e C(g). Note that
C is cosplit if and only if the k-dual algebra of every finite dimensional
subcoalgebra of C is split.

Suppose that C is cosplit. Then C is colocal if and only if C has a unique
grouplike element e and C = C(e). And C is cosemisimple if and only if
G(C) is a basis for C. For, under the assumption that C = ey C(g)
(direct), G(C) is a basis for C if and only if C(g) = kg for all g € G(C).

Throughout the remainder of this appendix we assume that C is a colocal
cocommutative k-coalgebra with minimal subcoalgebra D. Let 4 = C* be
the dual k-algebra of C and let M be the maximal ideal M = D*. Let M® = A4
and let C, be the subcoalgebra C; = (M**1)* for i = —1. Note that C_, =
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{0and D=Cy <= C; = Cy<---. Then C = | J§ C.. To see this, let xe C
and let C, be the finite dimensional subcoalgebra C, = “x4. Then we may
regard the k-algebra 4/C,* as the dual k-algebra of C,. Since A/C.* is finite
dimensional, its unique maximal ideal M/C.* is nilpotent, as we showed in
A.3. Thus, some power Mi*! of M is contained in C,*, so that C, <
M+Ht = C; for some i > 0. It follows that C = g C;, since C =
Uxec Cx-

Note that for i > 0, we have x € C; if and only if x* € C,_, for all a in the
maximal ideal M. For if ae M and xe C; = (M***)!, then 0 = x(ab) =
x%(b) for all be M, so that x*e (M)* = C;_,. And if x is an element of C
such that x* e C;_, for all ae M, then 0 = x%(b) = x(ab) for all ae M and
be M, so that xe (M}t = C,.

For x € C,, we have Ax € 37, C,_; ®; C;. We prove this by induction
onn. If n = 0, we have Ax € Cy ®, C, since Cy = D is a subcoalgebra of C.
Next, let n > 0 and choose a basis X1, ..., Xag Xag,ys - 5 Xags + + o> Xap_y+1
...s X, for C, such that x4 _,.1,..., X, is a basis for C; for 1 <i < n.
Since x is an element of the subcoalgebra C, of C, we have Ax = 3% ;x ® x;
for suitable ;x in C,. We claim that ;x € C,,_; and therefore ;x ® x, € C,_; ®
Cifordi_,+1<j<d and0 <i < n Forae M, we have x*e C,_, and
Ax® = >4 x* ® x;. Applying induction, we therefore have ,x* e C,_,_, for
di.,+1<j<dand0 < i < n, for all a € M. By the preceding paragraph,
it follows that ;xeC,_; for d,_, + 1 <j<d, and 0 <i <n, so that
Axe >t Ch_; ® Ci.

Suppose that the colocal cocommutative coalgebra C is cosplit. Let e be
the grouplike element of C so that C; = ke and M = {a e 4 | a(e) = 0}. Let
C° be the coideal C° = {xe C | &(x) = 0} = 1,* of C and let C,° be the
coideal C,° = C° N C; of the cosubalgebra C; of C for i > 0. Note that
C = ke + C° (direct) and C, = ke + C;° (direct) for i > 0. The elements
of C,° are those elements x of C such that Ax = x ® e + e ® x. For if
xeC,% then AxeC, ®R.Co+Co®.C, =C, Qe+ e®C;, so that
Ax = y ® e + e ® z where y, z € C;. Replacing y by u = y — &()e, so that
e(u) = 0, we have Ax = u @ e + e @ v where v = z + ¢(y)e. Then, by the
coidentity equations, we have x = e(u)e + e(e)v = 0 + v and x = uz(e) +
ee) =u+ew)=u+ex)=u+0 Thus, u=v=x and Ax=xQ®
e + e ® x. Conversely, let x be an element of C such that Ax = x @ e +
e ® x. Then &(x) = 0, since x = &(x)e + =(e)x = &(x)e + x. And xe C, =
(M?)*, since x(ab) = x(a)e(b) + e(a)x(b) = x(a)0 + Ox(b) = 0 for all @, b e
M. Thus, x € C,°. We have now shown that C,° = P,(C) where P,(C) is the
set Po(C) = {xeC| Ax = x ® e + e ® x} of e-primitive elements of C.

For n > 1, the elements of C,° are those elements x of C such that
Ax=xQ®e+ e® x (modCY_; ®, C2_,), in fact, such that

n—1
Ax=xRe+eQRx + Z,x@xi
1

where ;xe C2_;,, x,€ C® for 1 < i < n — 1. For suppose that x € C,° and
writt Ax =y Qe+ e®z + 2771 x ® x;where y, ze Cp, x€ Cpy, X, € C
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for 1 <i < n— 1. Since we could replace each x; by x; — e(x))e(l < i <
n — 1) and y by y + 3771 ¢(x,),x without disturbing the equality of the pre-
ceding equation, we may assume without loss of generality that x; € C,° for
1 <i < n— 1. Similarly, we may assume without loss of generality that
xeCp_forl <i<n— 1. Replace y by u = y — £(p)e, as before, so that
ew) =0 and Ax=uQ®e+eQ@v+ Dt 1 x ®x; where v =z + &(y)e.
By one coidentity equation, x = s(w)e + e(e)v + >3 e(x)x; = v. By the
other coidentity equation, x = e(e)u + e(v)e + >7 ' e(x,)ix = u. Thus,
Ax=xQe+e®@x+ >t 1 x®x; where xe C2_;,, x;eClfor1 <icx<
n — 1. Suppose, conversely, that xeC and Ax=x Qe + ¢ ® x (mod
CY_, ®, C2_,). Then «(x) = 0, since the coidentity equation implies that
= e(x)e + e(e)x = e(x)e + x. And for a,, ..., a,,., € M, we have

X(@ - Aniy) = X(@y - An)e(@nir) + €(@r - @)X(0n41) = 0,

so that xe (M"*1)* = C,. Thus, x € C,°.

The foregoing material provides a detailed picture of the structure of an
arbitrary cosplit cocommutative k-coalgebra C. For we know that C =
2se6c) C(8)- And we know for g e G(C) that C(g) = Ug C(g), C(g). =
kg + C(g),° and Ax =x®g +g®x + 2171 x ® x; with xe C(g)5-,,
x€C(@P( <i<n-—1)forn > 1andxe C(g),° Note that for g € G(C),
C(g),° coincides with the set P(C) = {xeC|Ax=xQg + g Qx} of
g-primitive elements of C. For we know that C(g),° < P,(C). And if x € P,(C),
then kg + kx is a colocal subcoalgebra of C containing g, so that x € C(g),
whence x € C(g),°.
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In this appendix, we develop a theory of bialgebras over an extension
field K/k which generalizes the usual theory of bialgebras over a single field k.
This theory was developed to study field extensions, and provides the proper
framework within which to extensively examine the structure of H(K/k). It
also provides a language within which the material of Chapters 5 and 6 can
be more effectively understood and applied.

We begin in B.1 with basic definitions and properties of K/k-bialgebras.
In B.2, we introduce the conormal K/k-bialgebras, those which arise in study-
ing normal field extensions, and give a rough description of their structure.
This description is then made more precise in B.3, where tensor products and
semidirect products of bialgebras are discussed. In B.4, we introduce the K-
measuring K/k-bialgebras and relate them to H(K/k). We also describe the
relationship between the K-measuring k-algebras and the K-measuring K/k-
bialgebras. In B.5, we concentrate on the role of K-measuring bialgebras in
the study of finite dimensional normal field extensions. The finite dimensional
conormal measuring bialgebras are described in terms of the finite dimen-
sional measuring coradical and co Galois bialgebras. The cosplit k-forms of
H(K/k) for a finite dimensional normal field extension K/k are described in
terms of the k-forms of H (K .q/k).

B.1 Preliminaries

A Kjk-algebra is a K-vector space A4 together with a K-linear product
mapping m: 4 ®. A—> A and k-linear identity mapping ¢: k — 4 with
respect to which A is a k-algebra. Here, 4 ®; A is regarded as K-vector space
with the scalar product such that c(a ® b = (ca) ® b for ceK and a, b € A.

A K|k-bialgebra is a K|k-algebra H together with K-linear coproduct and
coidentity mappings A: H — H Qg H, ¢: H — K with respect to which H is
a K-coalgebra such that

L A(ly) =15 ® 1y;
2. A(xy) = 34,51y @ xy; for x, ye H,
Ax = 3 x ® x;and Ay = 3,y ® ;3
3. e(ly) = 1g;
4. e(xy) = &(x)e(y) for all x, y € H such that (y) € k.

The K/k-bialgebra H(K/k) introduced in 5.3 will be referred to here as the
K/k-bialgebra of K|k.

A k-bialgebra is a k[k-bialgebra. If H is a k-bialgebra, then H ®, H can
be regarded as k-algebra (see A.2) and k-coalgebra (see C.2). It can easily be
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shown that the mappings A: H— H ®, H, «: H— k are k-algebra homo-
morphisms and that the mappings =: H ®, H — H, :: k — H are k-coalgebra
homomorphisms.

A subbialgebra/biideal of a K[k-bialgebra H is a K-subspace of H which is
a k-subalgebra/k-ideal of H and a K-subcoalgebra/K-coideal of H. A sub-
bialgebra/biideal of a k-bialgebra H is a subbialgebra/biideal of H as k/k-
bialgebra.

A homomorphism|isomorphism from a K/k-bialgebra H to a K[k-bialgebra
H' is a mapping f: H— H' which is a homomorphism/isomorphism of
k-algebras and of K-coalgebras from H to H'. A homomorphism/[isomorphism
from a k-bialgebra H to a k-bialgebra H' is a homomorphism/isomorphism
of k/k-bialgebras from H to H'.

Any subbialgebra D of a K/k-bialgebra H can obviously be regarded as a
K/k-bialgebra such that the inclusion mapping D — H is a homomorphism.
And for any biideal P of a K/k-bialgebra H, H/P can be regarded as a K/k-
bialgebra such that the quotient mapping H — H/P is a homomorphism.

If f: H— H’ is any homomorphism from a K/k-bialgebra H to a K/k-
bialgebra H’, then Kernel f = {x € H | f(x) = 0} is a biideal of H, Image fis
a subbialgebra of H’ and there is an isomorphism of K/k-bialgebras from
H/Kernel f to Image f mapping x + Kernel f'to f(x) for all x € H.

A k-form of a K/k-biaglebra H is a k-subspace H, of H which is a sub-
algebra of H as k-algebra and a k-form of H as K-coalgebra. Any k-form H,
of a Kjk-bialgebra H can be regarded as a k-bialgebra with the k-algebra
structure induced by that of H and the k-coalgebra structure induced by that
of H (see C.2).

If H is a k-bialgebra and k, is a subfield of k, then a ko-form of H is a
ko-subspace Hy, of H such that H, is a k,-form of H as k-algebra and as
k-coalgebra. Any k,-form H,, of a k-bialgebra H can be regarded as a
ko-bialgebra.

We now give some examples of k-bialgebras and K/k-bialgebras. As a
first example, let G be a group and let k[G] be a vector space over k& with basis
G. Then k[G] with its structure as group k-algebra of G (see A.l) and its
structure as group k-coalgebra of G (see C.1) is a cocommutative k-bialgebra,
called the group k-bialgebra of G.

As a second example, let G be a finite commutative group. Let T be the
k-dual space k[G]* of k[G], together with the dual k-algebra structure of
k[G] as group k-coalgebra of G and the dual k-coalgebra structure of k[G]
as group k-algebra of G. Then T is a commutative and cocommutative k-
bialgebra called the toral k-bialgebra of G. Note that £(¢t) = t(lg) for te T,
A(t) = 5t ® t, if and only if 2(gh) = J; #(g)t(h) for all g,heG for
teT, (st)(g) = s(g)t(g) fors,teTand ge G and 1,(g) = 1 for g e G. Note
also that the toral k-bialgebra T has a =~form T, = {t e T | ¢(G) < =}, and
that T, = {te T | t* = t}.

As a third example, let G be a group and p: G — Aut, K a homomor-
phism of groups. Let K[G] be the group K-coalgebra of G. Then K[G] can be
given the structure of k-algebra such that (ag)(bh) = (ap(g)(b))(gh) for all
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a,be Kand g, h € G (see B.3). Then K[G] is a K/k bialgebra, called the group
K/k-bialgebra of G via p. The k-span k[G] of G in K[G] is a k-form of K[G].
The k-bialgebra structure of k[G] induced by the K/k-bialgebra structure of
K[G] coincides with the group k-bialgebra structure of k[G]. The Kjk-
bialgebra structure of K[G] can be recovered from the k-bialgebra structure
of k[G] and the action p of G on K.

As a final example, let T be the toral k-bialgebra of a finite commutative
group G. Suppose that K has a graded decomposition K = Y, K, (direct
sum of k-subspaces of K) where abe K, forae K,,be K, forall g, he G
(compare with 6.2.5). We can regard K ®, T as K-coalgebra (see C.2) and as
k-algebra with identity 1 ® 1, such that

@b = as(gh @ sit

forallge G,ae K, be K, s,tcT where As = >, ;s ® s, (see 6.2.7 and B.3).
Then K ®, T is a K/k-bialgebra, called the K/k-bialgebra determined by T
and the graded decomposition K = 3, K,. Note that 1 ®, T is a k-form of
the K/k-bialgebra K ®, T.

Let H be an arbitrary K/k-bialgebra. Then the colocal component H (1)
of H containing 1 is a subbialgebra of H. To see this, we must show that
H(1y) is closed under multiplication. Thus, let C = H(ly), let A = H* be
the dual K-algebra of H as K-coalgebra and let M be the maximal ideal
M = 14 Then C; = (M**1)* and C = P C; = K1y + U C° (see C.4).
It suffices to show that for x € C,,and y € C,,, we have xy € C,,, , form, n > 0.
If m +n <1, this is certainly true. Next, suppose that m +n > 1. It
obviously suffices to consider the case xeC,° yeC,°. Then Ax =
S8 m_ix®xand Ay = 3% .,y ® y; where ;x, x,eCforl <i<m-—1,
py;eClforl <j<n—1,0x=xy=0y=y,=ly, wX =x, = x and
2y =yn=y.Letag,ay,...,a,,,bem+ n+ 1arbitrary elements of M. Then

(@ ApendD) = > S, toln—Xn- )1 - G n)xi7)) = O

i=0 =0

since each term in the sum is 0 by induction. (Eitheri + j < m 4+ n — 1 and
X1Y; € Cpyn—1, 50 that (a; -+ @p4,)(xiy;) =0, or i = m and j = n, so that
ao(oXoy) = ao(ly) = 0.) It follows that xy € C,, . ..

In an arbitrary K/k-bialgebra H, the set G(H) of grouplike elements of H
is closed under products and is therefore a monoid.

Let H be an arbitrary K/k-bialgebra and let xe H. If Ax = 3! x ® x;
where the elements of {x |1 < i < n}U{x;| 1 < i < n} commute pairwise,
then Ax? = 3, x? ® x;®. To see this, note that

Ax? = Zilx“"nx®xﬁ'”xiz’ = Z(el""aen)lxel"'nxe”®xlel"'xne"

where the coefficients (e, . . ., e,) are those such that

(ZV\’X,‘)"= WX XX, X,

=D (en, s €1 X XX o X
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in the polynomial ring k[X] in 2n algebraically independent elements X =
{X|1<i<nu{X,|1<i<n}overk. Since

(Sx)r = 3 oxe in i),
i

i

it follows, by comparison of coefficients, that

AxP = Zix" ® xfin HQx H.

i

B.2 Conormal bialgebras

A KJ/k-bialgebra H is conormal if H is cosplit and cocommutative (as K-
coalgebra) and G(H) is a group. A K/k-bialgebra H is co Galois|coradical if
H is conormal and H is cosemisimple/colocal.

If H is a cocommutative K/k-bialgebra and G(H) is a group, then H is
conormal/co Galois/coradical if and only if

H= > H(®)H =72 Kg/H = H(ly).
9eG(H)

It is clear that the K/k-bialgebra H(K]/k) introduced in 5.3 is conormal/
co Galois/coradical in the present sense if and only if H(K/k) is conormal/
co Galois/coradical in the sense of 5.3.

Let H be a K/k-bialgebra. We let Dg = {ug |uec D} for D < H and
g € G(H). Let g be an invertible element of the semigroup G(H). A subset D
of H is a subcoalgebra of H if and only if Dg is a subcoalgebra of H, as one
sees from the equations A(ug) = 2, (jug) ® u;g (v € D) and the invertibility
of g. (Note that g is put on the right hand side so that u — ug is K-linear.) It
follows that H(h)g < H(hg) for h e G(H). Similarly, H(hg)g~* < H(h) for
he G(H), so that H(h)g = H(hg) for he G(H). In particular, we have
H(g) = H(lx)g.

Let H be a conormal Kfk-bialgebra. Then every element g e G(H) is
invertible and H = J e, H(g) (direct), so that H = 3 eum H(lp)g
(direct), by the preceding paragraph. Letting k[G(H)] be the k-span of
G(H), it follows that H = H(1x)k[G(H)] (k-span of {xy|xe H(ly),
y € k[G(H)]}]. In fact, the k-linear mapping f: H(ly ®, kK[G(H)] — H such
that f(x ® y) = xy for x € H(ly), y € k[G(H)] is an isomorphism of vector
spaces over k, as one sees from the direction of the decomposition H =
S secan H(1x)g (direct). This generalizes to K/k-bialgebras part of a theorem
of Bertram Kostant on k-bialgebras (see [18] and B.3).

It is instructive at this point to look more closely at the conormal k-
bialgebras H. Then k[G(H)] is a subbialgebra. Moreover, the proof that
H(ly)g = H(g) (g € G(H)) has, for k-bialgebras, a left sided analogue which
shows that gH(1,) = H(g) (g € G(H)). Thus, we have gH(1x)g™! = H(1y)
for g € G(H). Letting p(g): H(15) — H(1y) be defined by p(g)(x) = gxg™?
for xe H(1y) and g € G, p is a homomorphism from G(H) into the group of
bijective linear transformations of H(ly). The product in the k-algebra
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H = H(1,)k[G(H)] is determined by p and the products in H(1y), kK[G(H)],
since (xg)(yh) = x(gyg~")(gh) = (xp(8) (M)(gh) for x, y€ H(ly), g, he G(H).
In the sense of the next section, this means that H as k-algebra is the internal
semidirect product of H(1y) and k[G(H)].

B.3 Tensor products and semidirect products

Let Hy be a K/k-bialgebra and H, a k-bialgebra. Then there are K-linear
mappings Ap,eom,: Hx @ Hi — (Hx Qi Hy) Qx (Hx @ Hy) and eppop,:
Hy ®; H,— Ksuchthat Ay op,(x ® y) = 34 ; (X Q1 ;¥) Qx (x; 4 y;) and
eugom (X @ ) = en (X)en (y) for x € Hg, y € H,. Together with Ay, sy, and
enpon,, Hx ®y Hy is a K-coalgebra. Moreover, Hx ®, H, together with this
K-coalgebra structure and the tensor product k-algebra structure is a K/k-
bialgebra, called the tensor product K|k-bialgebra of Hy and H,. If K = k, so
that H = Hy and H, are both k-bialgebras, then H ®, H, is called the
tensor product k-bialgebra of H and H,.

A representation of a k-algebra H on a k-vector space A is a k-linear
homomorphism p: H — End,, 4 from H to the ring End,, 4 of k-linear endo-
morphisms of A. A measuring representation of a K-coalgebra H on a K/k-
algebra 4 is a K-linear mapping p: H — End;, 4 such that p(x)(1,) =
e(x)1, and p(x)(ab) = 3; p(:x)(@)p(x;)(b) for x€ H and a, be A (compare
with C.1). A measuring representation of a K/k-bialgebra H on a K/k-algebra
A is a mapping p: H— End, A which is a representation of H as k-algebra
and a measuring representation of H as K-coalgebra. A measuring repre-
sentation of a k-bialgebra H on a k-algebra A4 is a measuring representation
of H as k/k-bialgebra on A as k/k-algebra.

Let H, be a k-bialgebra. Then an H,-module algebra is a k-algebra A
together with a measuring representation p, of H, on A. We let x(a) denote
pa(x)(a) for xe H,,aec A and note that x(1,) = e(x)1, for xe H, and
x(ab) = >, x(a)x,(b) for x € H,, and a, b € A. An H,~-module K|k-bialgebra/
H,-module k-bialgebra is a K|k-bialgebra/k-bialgebra H together with a
measuring representation py of H, on H as k-algebra. Any H,-module
bialgebra H is, of course, also regarded as H,-module algebra and the
notation x(a) for py(x)(a)(x € H,, a € H) is used as for H,-module algebras.

Let H be a k-bialgebra and 4 an H-module algebra. Let H, = 4 ®, H
and let =: H, ®, H, — H, be the k-linear mapping such that

M@®x) Q@ bRy) = ax(p)®xy fora,bed, x,yeH.
i

Then H, is a k-algebra with identity 1, ® 1y, called the semidirect product
algebra of 4 and H. To see that H, is a k-algebra, note first that (a ® x) x
1,y =a@xyand @R 10 R®y) =abQyfora,bed, x,yecH In
particular, 1, ® 1y is an identity with respect to the product in H,. To show
that (@ ®@ )b @ Y)(c®z2) = (a® x)((b Q y)c ® z)) for a,b,ce A and
x, y, z € H, we show that

2. ax(®),(x)))(Q) O (X2 = D, alX)BYeX)rs )(0) ®p Xiyz.

i,7,8 {,1,8
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Letting d = ,y(c) and w = y,z, it suffices to show that

2, x(B(x)(d) @ (x)r = >, (X)B)A) O X,

$.7,8 1,7,8
for we could first multiply by a ®, 1y, then by 1, ®, w. Since H is a k-
bialgebra. the above equation follows from the coassociativity equation

Z X Qp (X)) Ry (x), = Z %) R (1X)r S Xi.

Thus, H, is a k-algebra.

Let H, be a k-bialgebra and let H be an H,-module K/k- blalgebra/
k-bialgebra. Whenever H ®,, H, as K-coalgebra/k-coalgebra with respect to
the mappings Ayeu,, enen, described earlier in this section and as semidirect
product algebra of H and H, is a K/k-bialgebra/k-bialgebra, it is called the
semidirect product bialgebra of H and H,.

For any conormal k-bialgebra H, H(1y) is a coradical subbialgebra of H
and the k-span k[G(H)] of G(H) is a co Galois subbialgebra of H (see B.1 and
B.2). We let H,,q and Hg,, denote H(ly) and k[G(H)] respectively. We call

H,.4 the coradical component of H and Hg,, the co Galois component of H.
The k-linear mapping p: Hga, — End,, H,q such that p(g)(x) = gxg~* for
g € G(H) and x € H,,4 is a measuring representation of the k-bialgebra Hg,,
on H,.4 as k-algebra. For p is a representation of Hg,, as k-algebra on H_,,4
(see B.2) and p is a measuring representation of Hg,, as k-coalgebra on H,,4
as k-algebra since p(g)(xy) = gxyg~' = gxg~'gyg~" = p(8)X)p(&(») =
24 P(:8)(x)p(g)(y) for x, y € Hyoq and g € G(H), and p(g)(1x) = glug™" =
1y = &(g)1y for ge G(H). Furthermore, the k-linear mapping f: H..q ®
Hg,., — H from the semidirect product k-bialgebra H,,; ®, Hga to H such
that f(@ ® x) = ax for a € Hyq, X € Hg,, is an isomorphism of k-bialgebras.
For fis an isomorphism of vector spaces over k, as was shown in B.2. And
we have (a ® g)(b ® h) = 3 ap(:g)(b) ® gih = ap(g)(b) ® gh in the semi-
direct product H,,q ®; Hea whereas (ag)(bh) = agbg~gh = ap(g)(b)gh in
H for a,be H(ly) and g, h € G(H). In this sense, H = H,,qHg,, (internal
semidirect product bialgebra). This proves Bertram Kostant’s splitting
theorem for k-bialgebras [18].

B.4 Measuring bialgebras

A K-measuring K|k-bialgebralk-bialgebra is a K|k-bialgebra/k-bialgebra
H together with a measuring representation py of H on K. We denote
pu(x)(@ by x(a) for any element x of a K-measuring K/k-bialgebrajk-
bialgebra H of aﬁy element a of K. Note than H(K/k) may be regarded as
K-measuring K/k-bialgebra where pyx, is the inclusion mapping.

A homomorphism[isomorphism from a K-measuring K/k-bialgebra/k-
bialgebra H to a K-measuring K/k-bialgebra/k-bialgebra H’ is a homomor-
phism/isomorphism f of K/k-bialgebras/k-bialgebras from H to H' such that
the diagram
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u L

A\ o

End, K

is commuative.

The commutant of subset C of a K-measuring bialgebra H in K is the
subfield K€ = {a € K | x(ab) = ax(b) for all x € C, b € K} of K. Note that if
C is closed under A, that is, if for x € C there exist ;x, x; € C such that
Ax = 3;;x ® x;, then the commutant K€ of Cin Kis K¢ = {ac K| x(a) =
e(x)a for all x € C}. For if Ax = 3; x ® x;, then

x(ab) = 2 x(@x(b) = a >, «(x)x(b) = ax(b)

for any a € K such that ;x(a) = &(;x)a for all i and for any b€ K. And if
a e Kand x(ab) = ax(b) for all x € C and b € K, then x(a) = x(al) = ax(1) =
e(x)a for all x e C.

Let H be a K-measuring K/k-bialgebra and let Kernel H = {x € H | x(a)=
0 for all @ € K}. Then py is a homomorphism of K-measuring K/k-bialgebras
from H to H(K/k) with kernel Kernel H. For we have ¢(pu(x)) = pu(x)(1x) =
eg(x) g = ey(x). And for Ay(x) = >, x @ x;, we have

pu(x)(@b) = >, pu(X)@pu(x)®)  foralla,beKk,
50 that A(pg(x)) = 3, pu(ix) ® pu(x;). Finally, the diagram

H 22, HEKk)

PIN /’H(Klk)
K

End,

is commutative since py /i, is the inclusion mapping.

It follows that for any K-measuring K/k-bialgebra H, Kernel H is a bi-
ideal of H and H/Kernel K can be regarded as a K-measuring K/k-bialgebra
isomorphic to a subbialgebra of H(K/k). If K/k is finite dimensional, then
H/Kernel H is isomorphic to H(K/K*"), by 5.3.12.

The above discussion has no counterpart for K-measuring k-bialgebras H.

A K-measuring K/k-bialgebra H is semilinear if x(by) = > x(b)x;y for
all k € K and x, y € H. Note that H(K/k) is semilinear.

Suppose that H is a semilinear X-measuring K/k bialgebra and let g be an
invertible element of G(H). If D is a K-subspace of H, then gD = {gu | u € D}
is a K-subspace of H, since a(gu) = g(g~(a))(gu) = g(g~*(a)u) egD for
acK,ue D, ge G(H). It follows that a subset D of H is a subcoalgebra of H
if and only if gD is a subcoalgebra of H, hence that gH(h) < H(gh) and
g 'H(gh) < H(h) for all he G(H) as in B.2. Thus, gH(h) = H(gh) for
h e G(H). In particular, H(g) = gH(1y). Since H(g™') = H(1x)g™* (see
B.2), we therefore have gH(1)g™* = H(1y).
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Suppose that H is a conormal semilinear K-measuring K/k-bialgebra, so
that H = H(1)k[G] where H(1) = H(14) and G = G(H) (see B.2). Let
p: k[G] — End,, H(1) be the k-linear mapping such that p(g)(x) = gxg~* for
x € H(1) and g € G. (Here we use the observation of the preceding paragraph
that gH(1)g~* = H(1) for g € G in the presence of the semilinearity of H.)
Then p is a representation of k[G] on H(1) as k-algebra. In fact, p is a measur-
ing representation of k[G] on H(1), since p(xy) = g(xy)g™! = gxg~gyg~' =
P(8)(x)p(g)(y) for x,ye H(1) and g€ G, and p(g)(ly) = glug™ = 1y =
e(g)ly for geG. Now it is clear that the vector space isomorphism
S H(1) ® k[G] — H of B.2 such that f(x ® y) = xy for x € H(1), y € k[G]
is an isomorphism of K/k-bialgebras from H(1) ®p k[G] (semidirect product
K/k-bialgebra) to H. For we have (x @ 2)(y ® h) = xp(g)(y) @ gh in
H(1) ® k[G], whereas (xg)(yh) = xgyg~'gh = xp(g)(y)(gh) in H for
x,y € H(l)and g, h € G. In this sense, we have H = H(1)k[G] (internal semi-
direct product bialgebra). This generalizes to K/k-bialgebras Bertram Kostant’s
splitting theorem for k-bialgebras (see B.3).

We next relate the K-measuring k-bialgebras and the semilinear K-
measuring K/k-bialgebras. If H, is a K-measuring k-bialgebra, and if Hy =
K ®; H, as semidirect product k-algebra (see B.3) and K-coalgebra by ascent
(see C.2), then Hy together with the K-linear mapping py,: Hx — End, K
such that py (@ @ x) = apy,(x) for a € K, x € H, is a semilinear K-measuring
K|k-bialgebra. Moreover, 1 ® H, is a k-form of Hy as K/k-bialgebra. We
defer the details until the next paragraph. It is convenient to be able to pass
from the k-bialgebra H, to the K/k-bialgebra H, = K ®, H,, since then
Kernel Hy is a biideal of Hy, and Hy/Kernel Hy can be imbedded in H (K/k)
and in End, K. Conversely, suppose that H is a semilinear K-measuring
K/k-bialgebra. Suppose further that H, is a k-form of H as K/k-bialgebra.
Then H, can be regarded as K-measuring k-bialgebra. Let Hy = K ®, H,
be the k-measuring K/k-bialgebra described above. Then the k-linear map-
ping f from Hy = K ®, H, to H such that f(a ® x) = ax for ae K and
x € Hy is an isomorphism of K-measuring K/k-bialgebras, as one easily sees
from the equations

@0y = Z ax(b) ® x,y (product in Hy)

and ’
(ax)(by) = Z ax(b)x;y (product in H) fora,be K, x, y € H,.
i

In this\sense, H = KH, (internal semidirect product).

We now give the details which establish that the Hy constructed in the
preceding paragraph from the K-measuring k-bialgebra H, is a semilinear
K-measuring K/k-bialgebra. Let the structure mappings for Hy be denoted
Tk, ¢k Ak, &g, pu,. Then py, is a representation of Hy as k-algebra, since

@826 ® MO = (3 ax®) ® 53)(© = 3 ax®h©)
and
(@ ® (6 © )0 = @@ NEE) = alsH) = 3, axBx)
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for all ce K and for all a, b€ K, x, y € H,.. And ex(y) = y(1x) for y € Hy,
since ex(a@ ® x) = ae(x) = ax(lg) = (a @ x)(Ig) for aeK, xe H,. For
ye Hyand b, c € K, y(bc) = 3, ;¥(b)y,(c), since

Ax(@® x) = D ax ® x;
i

and

(@ ® x)(be) = a(x(bc)) = a Z x(B)xi(c) = Z (@x)(B)x(c)

for x € H, and a € K. Thus, py, is a measuring representation of Hy as K-
coalgebra. We next show that Hy is a K/k-bialgebra. For x, y € Hy and
ex(y) € k, we have ex(xy) = ex(x)ex(y), since ex(xy) = (xp)(1x) = x(y(1g)) =
x(y(1lg) = y(1x)x(1g) = ex(p)ex(x). And Ag(xy) = 2; %y Qk x;y; for
x, y € Hg. To prove this, it suffices to show that

A@@ @ X)b @) = 2, (a @ )b ®r ) Ok (@ @i X)(b Ry y)s

i,

fora,be K and x, y € H,.

This amounts to showing that

‘Z @x(5) ®u (x)sy) ®x (1 @ (x)r35)
= 2 @()®) @ (%) ) Ok (I @y X3,

i,1,8

which follows from the equation
2, X(8) ®1(x) B (), = 2 {¥)(B) ®x (), B %
which in turn follows from the coassociativity equation
20 % @ ) @i (1), = 2 /(%) @i (), @ 3

Thus, Hy is a K/k-bialgebra. It is clear that 1 ®, H, is a k-form of Hy.
Finally, we show that x(by) = >, x(b)x,y for x, y € Hy and b € K. What we
must show is that

@® x)bc®y) = a® x)b)a® x)c @ )

i
fora,ce K, x, ye H, and b € K. This amounts t6 showing that
2, a(D)B)X)(0) ® %y = D, ax(b),(x)(c) ® (%)Y,
i,r i,r

which follows from

Z AX)(B)(x)c) ® x; = Z iX(0) (x:)(€) ® (X)),

i,r i7

which in turn follows from the coassociativity equation

D) ® () @ X = D X ® (%) ® (%)

ir i,7
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We conclude this section with some examples of K-measuring bialgebras.
If G is a group and p: G — Aut, K a homomorphism of groups, then the
group k-bialgebra k[G] together with the k-linear mapping p,: k[G] — End, K
such that p,(g) = p(g) for g e C is a K-measuring k-bialgebra. The semi-
direct. product K-measuring KJ/k-bialgebra K ®, k[G] is canonically iso-
morphic to the group K/k-bialgebra K[G] of G via p described in B.1. Thus,
K[G] may be regarded as a K-measuring K/k-bialgebra with k-form k[G] and
K[G] = Kk[G] (internal semidirect product).

As a second example, let G be a finite commutative group and K =
2ecc K, (direct) a graded decomposition of K into k-subspaces K, such that
K,K, = K,;, for g, he€ G. Let T be the k-bialgebra k[G]* with k-algebra and
k-coalgebra structures dual to the k-coalgebra and k-algebra structures of the
k-bialgebra k[G]. For ¢ € T, let p(z) be the element of End, K such p(¢)(a) =
t(g)a for ac K, and ge G. Then T together with p is a K-measuring k-
bialgebra, called the toral K-measuring k-bialgebra determined by G and the
grading K = 3¢ K;. The semidirect product K-measuring K/k-bialgebra
K ®, T is canonically isomorphic to the K/k-bialgebra described in B.1.

B.5 Bialgebras and the structure of finite dimensional field extensions

We have introduced K-measuring bialgebras for the purpose of studying
the structure of field extensions K/k. We know from B.4 that if H, is a K-
measuring k-bialgebra, then H, gives rise to a semilinear K-measuring K/k-
bialgebra Hy = K ®, H,. And if H is any K-measuring K/k-bialgebra, then
Kernel H is a biideal and H/Kernel H may be regarded as a K-measuring
K/k-bialgebra isomorphic to a subbialgebra of H(K/k). In particular,
H/Kernel H is isomorphic to H(K/K*) if H/Kernel H is finite dimensional
over K or K/k is finite dimensional. Thus, the K-measuring K/k-bialgebra
H(K/k) is, ultimately, what should be used in studying the extension K/k.

It is convenient, nevertheless, to know the behavior of K-measuring K/k-
bialgebras more general than H(K/k), since K-measuring K/k-bialgebras other
than H(KJk) do occur naturally. One instance of this is the H(K/k)” of 6.3,
which can be regarded naturally as a K7-measuring K ”/k-bialgebra if K/k is
a finite dimensional normal extension, T is a toral k-subbiring of H(K/k) and
the extension K/K7 is radical.

The K-measuring K/k-bialgebras of most interest in studying finite
dimensional normal extensions K/k are the finite dimensional conormal
semilinear K-measuring bialgebras such that G(H) is faithfully represented on
K in the sense that the only element g in G(H) such that g(a) = a for all
a € Kis g = 1. The reason for this is that the present emphasis in studying
K|k is on the radical component K4 of K over k. For instance, let 7 be a
nonzero toral k-subbiring of H(K/k) such that K/KT is radical. Then, in
passing from the K-measuring K/k-bialgebra H(K/k) to the K7-measuring
KT |[k-bialgebra H(K/k)T, G(H (K/k)") is faithfully represented on K7, as was
G(H(K]Jk)) on K, even though Kernel H(K/k)" is nonzero.

We now consider a finite dimensional conormal semilinear K-measuring
K[k-bialgebra H such that G(H) is faithfully represented. Note that H may
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be regarded as a K/K"-bialgebra. For if b € K¥ and x, y € H, then we have
x(by) = b(xy), since

xby) = 3 xOy = 3 by = b{ (3 dwym)») = o
Recall that H(1) is a coradical subbialgebra of H (see B.1 and B.2). And the
K-span K[G] of the group G = G(H) of grouplike elements of H is a co
Galois subbialgebra of H, since (ag)(bh) = >, a,g(b)gh = ag(b)gh for
a,be K and g, he G. Recall that py: H— H(KJk) is a homomorphism of
K|k-bialgebras and that p,(H) = H(K/K¥). Similarly, p,(H(1)) = H(K/K#®)
and py(K[G]) = H(K/K®). Since H/H(1)/K[G] are conormal/coradical/co
Galois, it follows from 5.3 that K/K* is normal, K/K*® is radical and K/K¢
is Galois. Letting K., = K¢and Kg, = K¥®, it follows that K = K,,qKaar,
since K/K;,4Kc., is radical and Galois. We observe that the group G acts as a
group of bijective k-linear transformations on H, an element g € G sending 4
to ghg~* for all h € H. Moreover, we observed in B.4 that gH(1,)g* <
H(1y) for g € G(H), so that the subbialgebra H(1) of H is G-stable. Since G is
faithfully represented on K, we may regard G as a subgroup of Aut, K. Then
the mapping G x H — H sending (g, h) to ghg~* is a G-product on H as
vector space over K, since g(ah)g! = (gla)gh)g~* = gla)(ghg™Y) for all
acK,he Hand g € G (see 3.2). It follows that H® = {he H | ghg~* = h for
all g € G} is a K%form of H as vector space over K. It is clear that HS is a
k-subalgebra of H. Let x,, . . ., x, be a basis for H¢ over K¢, hence a basis for
H over K. Let xe H® and Ax = 3, ;x ® x;. Note that for g € G, Ag(x) =
21 8(x) ® g(x;) by the product preservation Agxg~! = 5, gixg~' @ gxig L.
Thus, we have

DX ®@x = Ax = Ag(x) = Z 8(x) ® g(x;) = Z (%) ® x,

i

so that ;x = g(;x) for all g € G. Thus, the ,x, ..., ,x are elements of HS. It
follows that there is a K°linear mapping AS: HS — H® ®.o HS such that
for xe HY and 1x, x,,. .., ¥, x, € H% A%Xx) = 57 ,;x @0 x, if and only if

A(x) = 21 ix ®x x;. The mapping e = &40 maps HE to K¢, since g(:%(x)) =
8(e(x)) = g(x(1x)) = g(x)(g(1x)) = x(1x) = #(x) for x € H, g€ G. Now it is
easy to see that H as K"-algebra together with A® and ¢ is a K¢/K®-
bialgebra. Let H,q = H(1)¢ and recall that K,,, = K°. Since H(1) is a G-
stable subbialgebra of H, H,,, is a K,,4-form of H (1) as K-vector space. There
exists a K,,q4-linear mapping A.q: Hynqg = Hpaq @ kraa Hraa SUch that for
X € Hpag and 1x, X1, .. ., oX, X € Hygq, Apa(®) = SPix ® Krea i if and only if
A(x) = 3% x ® x;, which is proved as above in the case of HS. The mapping
Erad = €|req = £%|H,0q MaPs Hypq into Ki,q = K€ It is now easy to see that
H,,q as K"-algebra together with A, and ¢,, is a coradical K..q/KH-
bialgebra. We next let Hg,, be the Kgo-span Kg,[G] of G. Note that Hg,,
is @ Kgq-form of K[G] as vector space. Let eg, = ¢ Hea, and let Ag,, be the
Kg.-linear mapping from Hg,; to Hgyy @ koas Hoar SUCh that Ag(g) = g Q g
for g € G, so that Hg,, together with Ag,;, &g, is a Kga-coalgebra. We have
Kiaq = K¥se1and Kg, = K¥rea. Furthermore, the elements of H,,; = H (D¢
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commute with the element of Hg, = Kga[G). It follows that H = H,pqHga
(k-span  of {xy | x € Hyq, y € Heai}), since H = H(1)G = KHp.aG =
KroaKcaHrodG = KiaaHroaKeaG = HraaHoa The subfield K;oq = K"ost is
H,,sstable. For if a € K.,q and x € H,,q then

y(x(@) = (yx)(@) = ()@ = X(¥@) = X(ecar(1)a) = ecar(1)¥(a)

for all y € Kg,,. Similarly, the subfield Ko = K*raa is Hga-stable. It follows
that Hg,, is a KH-subalgebra of H, hence that Hg, can be regarded as a
Kga/KH-bialgebra. For (ag)(bh) = ag(b)gh € Hga for a,b € Koa, 8, h€G.
Let praa: Hiea — End; Kpoa and  pgar: Heay — Endy Koy be defined by
Prad(x)(a) = x(a) forae Krad and x € Hrad and PGal(y)(b) = )’(b) forbe KGa.l
and y € Hg,. Then H,,q together with p,.q is a coradical semilinear Ki,q-
measuring K,.q/K#-bialgebra and Hg,, together with pg,, is a co Galois semi-
linear Kg,-measuring Kg./K"-bialgebra such that G(Hg,) is faithfully
represented. The extension K4/ K¥ is radical, since p,a(H:aq) is coradical and
is isomorphic to H(K,.qa/K¥) (see 5.3). And the extension Kg,)/K¥ is Galois,
since pga(Hea) is co Galois and is isomorphic to H(Kga/K*¥). Since K =
K,oaKcas it follows that K,,q and Kg, are the radical and Galois com-
ponents of K over K¥, so that K = K,,qKc.: (internal tensor product of KH-
algebras). In particular, we have K: K¥ = (Kpna: K¥)(Kgar: KH). Since H =
H,,qHaa1, We therefore have H = H,,qHg, (internal tensor product of KH.
algebras). For we know that the elements of H.,, commute with the elements
of Hg,i, so that it remains only to show that

H:KH¥ = (Hppq: K¥)(Hga: KY).
But H = H(1)G, so that

H:K = (H(l)'K)(Gl) = (Hrad:Krad)(HGal:KGal)
and

H:K¥ = (HK)(K KH) = (Hra.d:Krad)(HGal:KGal)(Krad:KH)(KGaI:KH)
= (Hraa: K*)(Hgar: KY).

The observations of the preceding paragraph enable us to describe the
finite dimensional conormal semilinear measuring bialgebras H such that
G(H) is faithfully represented in terms of the finite dimensional coradical and
co Galois semilinear measuring bialgebras. For suppose that K..q/k and
Kga/k are finite dimensional radical and Galois extensions respectively, and
that H,,4 and Hg,, are finite dimensional coradical and co Galois semilinear
K,.o~ and Kg,-measuring K.q/k- and Kg,,/k-bialgebras respectively. Let K
be the field K = K,oq ®y Kea (tensor product of k-algebras) and let H be the
k-algebra H = H,q @) Hea (tensor product of k-algebras). Then there are
K-linear mappings Ay: H— H ®x H and ey4: H— K such that

Ap(x @i y) = ,Z, (X Qkpaa 1Y) Rx (Xt Qkgar V1)

and
sH(x ®k y) = aHrad(x) ®k 8Hqgl(y)
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for x € Hy,q and y € Hg,;, and H together with Ay, &4 is a conormal semi-
linear K/k-bialgebra called the tensor product bialgebra of H.,q and Hg,.
Letting py: H — End, K be the K-linear mapping such that pu(x ®, ) =
Prraa(®) Ok prga(¥), H together with py is a finite dimensienal conormal
semilinear K-measuring K/k-bialgebra such that K¥ = k. Moreover, G(H) is
faithfully represented if G(Hg,,) is faithfully represented. Conversely, let H
be any finite dimensional conormal semilinear K-measuring K/k-bialgebra
such that G(H) is faithfully represented and such that K¥ = k. Let K,,q,
Ko, Hpoas Hea be as obtained from K and H in the preceding paragraph.
Thus, K,.q/k and K, /k are finite dimensional radical and Galois extensions
respectively, H,.,q and Hg,, are finite dimensional coradical and co Galois
semilinear K,.q~ and Kg,-measuring K ,q/k- and Kg,, /k-bialgebras respec-
tively. Moreover, G(Hg,,) is faithfully represented. Then the k-linear map-
ping a: K nq Qi Kgay — K such that a(a @ b) = ab for a € K;o4, b € Kgq is an
isomorphism of fields. Upon identifying K,,4 ®; Kga.; and K by way of «, the
k-linear mapping 8: H;.q ®; Hga — H such that a(x @ y) = xy for x € Hyaq,
y € Hg,, is an isomorphism from the K-measuring K/k-bialgebra H,.q ®j
Hg,, (tensor product bialgebra) to the K-measuring K/k-bialgebra H.

We conclude with some comments on k-forms of K-measuring K/k-
bialgebras. The k-forms of H(K/k) are of particular importance, since their
structure in some important cases is simple enough that they can be used to
study the structure of K/k in great detail. This is the case, for instance, when
H(K|k) has a k-form of the form Tk[G] (internal tensor product of k-
bialgebras) where T is a diagonalizable toral k-subbiring of H(K/k) and
G = Aut, K (see 6.2).

We begin with a finite dimensional conormal semilinear K-measuring
K/k-bialgebra H with k-form H,. We know that H, is a K-measuring k-
bialgebra and that H = KH, (semidirect product bialgebra). If H, contains
G(H), then H, is cosplit (as k-coalgebra). For if D, is a subcoalgebra of Hj,
then D = KD, is a subcoalgebra of H = KH; and D, N G(H,) = D N G(H)
is nonempty. Suppose, conversely, that H, is cosplit. Then H, is conormal.
For H, is cosplit and cocommutative, so that Hy = Dgequm, Hi(g). And
G(H,) is a subsemigroup of the finite group G(H), hence a group. It follows
that H, = H(1)k[G(H,)] (semidirect product bialgebra). Since H = KH,
and H = H(1)k[G(H)] (semidirect product bialgebra) (see B.4), it follows
that H(1) = KH,(1) and G(H) = G(H,).

It follows from the above paragraph that the cosplit k-forms of a finite
dimensional conormal semilinear K-measuring K/k-bialgebra H are those
k-subspaces H, of H of the form H, = H(1)k[G(H)] where H(1) is a k-
form of H(1) such that gxg~* e H(1), for all x e H(l), and g € G(H).

Let K/k be a finite dimensional formal field extension. Then a cosplit
k-form H, of the K/k-bialgebra H(K/k) is of the form H, = H,(1)k[G]
(internal semidirect product of k-bialgebras) where G = G(H(K/k)) =
Aut, K and H,(1) is a k-form of H(K[k)(1) = H(K|Kga1). For H, to stabilize
K..q and Kg,, it is therefore necessary and sufficient that H,(1) stabilize K., ,.
And for H,(1) to stabilize K., it is necessary and sufficient that H,(1) be a
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k-form of H(KJk).qq, in which case H, (1) may be regarded as a k-form of
H(K,.q/k) (see 5.3.21) and H, = H,(1)k[G] (internal tensor product of
k-bialgebras).

The problem of finding the cosplit k-forms H, of H(K/k) which stabilize
the radical and Galois components K,,q and Kg,, of a finite dimensional
normal extension K over k is reduced by the preceding paragraph to the
problem of finding the k-forms of H(K,.q/k). For the latter are automatically
cosplit and give rise, upon tensoring over k with the group k-bialgebra
k[Aut,Kg.,], to cosplit k-forms of H(K/k) stabilizing K..4 and Kg,;.

It is not known whether H(K,.q/k) has a k-form for every finite dimen-
sional radical extension K,.4/k. If T is a toral k-subbiring of H(K.q/k) such
that K% 4 = k, then T is a k-form of H(K,.4/k) and the structure of the exten-
sion K, ,4/k can be studied in great detail using 7 as in Chapter 6. More
generally, for any toral k-subbiring T of H(K.4/k), the centralizer H(K,qq/k)"
of Tis a KT-form of H(K,.q/k), which may be regarded as a K, ;-measuring
K7 q/k-bialgebra. Since for any nontrivial finite dimensional radical extension
Kioa/k, H(K..4/k) contains nontrivial toral k-subbirings, the extension
K[k, can be studied inductively by taking sequences of toral forms.
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